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Preface

This volume contains abstracts of papers accepted for presentation at the 38th Solid Mechanics
Conference (SolMech 2012) held in Warsaw, August 27–31, 2012.

The series of Solid Mechanics Conferences have been organized by the Institute of Funda-
mental Technological Research since 1953. The conferenceshave maintained high scientific stan-
dard and served as a forum for exchange of ideas and research information. Traditionally, a set of
invited plenary lectures have been presented at the Conferences by outstanding researchers. The aim
of the meetings is to bring together the researchers from different countries and to create them the
possibilities for the presentation of scientific results from a wide area of solid mechanics.

During this Conference, nine invited plenary lectures are going to be delivered. The Con-
ference is organized into eleven Thematic Sessions with 13 keynote lectures and contributing oral
presentations:

• Shells and Plates (23 presentations)

• Continuum Mechanics, Elasticity and Plasticity (Special Session in Memory of Jan Rych-
lewski) (21 presentations)

• Computational Aspects of Solid Mechanics (18 presentations)

• Experimental Mechanics (17 presentations)

• Micromechanics, Interfaces and Multi-Scale Modelling (14presentations)

• Smart Materials and Structures (11 presentations)

• Fracture, Damage and Fatigue of Materials (11 presentations)

• Structural Mechanics, Optimization and Reliability (9 presentations)

• Biomechanics (6 presentations)

• Geomechanics (5 presentations)

• Nonlinear and Stochastic Dynamics (3 presentations)

On behalf of the Scientific and Organizing Committees of the 38th Solid Mechanics Confer-
ence (SolMech 2012) I wish all participants and accompanying persons an inspiring and enjoyable
stay in Warsaw.

Ryszard Pęcherski

Warsaw, August 2012
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MULT I-AXIAL S TATIC AN D DYNAM IC EX PERIM ENTS TO INV ESTIGATE THE 
EFFECT OF STRESS TRIAXIALI TY AND LODE ANGLE ON DUCTIL E FRACTURE 

 
 

Dirk Mohr 
Solid Mechanics Laboratory (CNRS-UMR 7649), Department of Mechanics, 

École Polytechnique, Palaiseau, France 
Impact and Crashworthiness Laboratory, Department of Mechanical Engineering, 

Massachusetts Institute of Technology, Cambridge MA, USA  
 

 
 Recent experimental results have stimulated the development of Lode angle dependent 
fracture models. This talk provides an overview on new techniques for the experimental 
characterization of the effect of stress state on ductile fracture. Diff erent types of flat specimens 
with selected cut-outs are discussed to characterize the effect of stress state on ductile fracture. An 
optimized butterfly-shaped specimen as well  as a modified Lindholm specimen are presented for 
fracture testing under combined loading in dual actuator systems. Special emphasis is placed on the 
accuracy of a hybrid experimental-numerical approach which makes use of digital image correlation 
and finite element analysis to determine the local loading history all  the way to the onset of ductile 
fracture. Examples are shown to elucidate the importance of reliable ductile fracture experiments to 
come up with physicall y-sound ductile fracture models for low stress triaxialities. In addition, a new 
SHPB tensile testing technique is presented to determine the effect of stress state under dynamic 
loading conditions.   
 The effect of strain-rate and stress-state on the ductile fracture of Advanced High Strength 
Steel (AHSS) sheets is determined using a hybrid experimental-numerical technique. Experiments 
under static loading conditions have demonstrated that both the effect of the stress-triaxiality and 
Lode angle have a strong influence on the apparent ductilit y of AHSS sheets. The so-called basic 
fracture testing program consisting of notched tensile specimens with different notch radii and a 
tensile specimen with a central hole is therefore performed for dynamic loading conditions. A 
newly-developed tensile testing device is employed in conjunction with a modified split Hopkinson 
pressure bar system to perform the dynamic experiments. The material parameters of the underlying 
rate-dependent plasticity model are identified through an inverse calibration method. Based on the 
recorded force-time histories and the DIC displacement-time measurements, finite element 
simulations are performed to determine the local stress and strain state history within the specimen 
gage section up to the point of onset of fracture. In addition to uniaxial experiments for pre-necking 
strain rates of up to 103/s, equi-biaxial punch experiments are performed for equivalent plastic strain 
rates ranging from 10-3/s to 103/s. It is found that the ductilit y of the tested TRIP and DP steels 
increases as a function of strain rate. A rate-dependent phenomenological fracture model is 
therefore proposed to account for both the effect of strain-rate and stress-state on the onset of 
ductile fracture.   

Keywords: ductile fracture, strain rate, stress triaxiality, lode angle 
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INTERFACIAL ENERGY EFFECTS IN MICROMECHANICAL MODELLING

OF SHAPE MEMORY ALLOYS

S. Stupkiewicz, H. Petryk

Institute of Fundamental Technological Research (IPPT), Warsaw, Poland

1. Introduction

Shape memory alloys (SMA) exhibit spectacular effects, such as pseudoelasticity and shape

memory effect, which are exploited in many advanced practical applications. These effects are asso-

ciated with martensitic phase transformation induced by temperature changes or mechanical loading.

At the microscale, the transformation proceeds by formation and evolution of complex martensitic

microstructures at multiple length scales. Understanding these multiscale phenomena is crucial for

development of reliable predictive models of SMA behaviour, hence significant research efforts have

been spent in the last two decades on micromechanical modelling of shape memory alloys, martensitic

microstructures, and related phenomena.

As mentioned above, martensitic transformation in SMA is a multiscale phenomenon. Evo-

lution of the corresponding microstructures is thus associated with formation and propagation of

interfaces at multiple scales. For instance, evolving laminated microstructures are typical for stress-

induced martensitic transformations [1].

It is well known that size effects are governed by size-dependent interfacial energy contribu-

tions. Modelling of size effects in SMA requires thus consideration of the interfacial energy contri-

butions at various scales of martensitic microstructures. This lecture will present an overview of the

related aspects of the mechanics of martensitic microstructures.

2. Microstructured interfaces and interfacial energy

An interface between austenite and twinned martensite is a typical example of a microstructured

interface where the local incompatibility of transformation strains is accommodated by elastic micro-

strains in a thin transition layer along the interface. The associated interfacial energy of elastic micro-

strains is, in fact, a bulk energy at a suitably fine scale, and it is interpreted as an interfacial energy

at a higher scale, which corresponds to a kind of scale transition. The problem is that this interfacial

energy cannot be measured directly, so that theoretical predictions seem to be the only alternative. A

micromechanical framework for prediction of the elastic micro-strain energy and morphology of the

transition layer at the austenite–twinned martensite interface has recently been developed in [2, 3, 4].

3. Incremental energy minimization

Formation of microstructure can be explained by minimization of non-convex free energy. How-

ever, consideration of the bulk energy contributions alone leads to infinitely fine microstructures. It

is well known that characteristic length scales are introduced by size-dependent interfacial energy

contributions, which allows prediction of characteristic dimensions of the microstructure.

Evolution of microstructure is associated not only with changes in the free energy but also with

dissipation. A relevant evolution rule can be derived from the criterion of stability and takes the

form of minimization of the incremental energy supply to the thermodynamic system, including the

rate-independent dissipation [5]. The incremental energy minimization approach is fairly general;

however, it requires a certain symmetry restriction to be imposed on the state derivative of the dissi-

pation function [5, 6]. The interfacial energy contributions to the free energy and dissipation can be

included in this framework in a natural way [6, 7].
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In a related recent study of stability of equilibrium of evolving laminates [8], it is shown that

a homogenized phase-transforming laminate with no length scale exhibits a localization instability.

However, for laminates of finite spacing, the evolving laminates are stabilized by the elastic micro-

strain energy at the boundary of the localization zone.

4. Size effects in SMA polycrystals

Applications of the general framework discussed above include a study of the pseudoelastic

response of an idealized CuAlNi polycrystal [7] and a study of the grain-size effect on the macroscopic

response of NiTi shape memory alloy [9]. It is demonstrated that quantitative evaluation of size

effects is possible without introducing any artificial length-scale parameters. In particular, the effect

of grain size on the stress-strain response and hysteresis width can be studied quantitatively, and the

characteristic dimensions of the microstructure, e.g., martensite plate thickness and spacing, can be

predicted.
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Abstract 

To determine limit states of mechanical structures has always been one of the most important 
design issues in mechanical and civi l engineering and long before modern computational tools had 
been available, engineering scientists and mathematicians have developed methods to deal with this 
question. For this, most important is to identify failure mechanisms in their particular technical 
context, to model them and to understand the structural evolution leading to the according limit 
state.  

Among the large variety of scenarios, we deal here exclusively with failure caused directly by 
inelastic material behaviour, concentrating on ductile metal or metal-li ke materials. From 
methodological point of view, only so-called Direct Methods, in particular Limit- and Shakedown 
Analysis are considered. Limit Analysis, applicable only in the case of monotone loading is 
considered as particular case of Shakedown analysis, valid for variable loads with not 
deterministicall y given loading histories. 

In this lecture a state-of-the-art presentation of Direct Methods in this sense is given focusing 
on the extension of range of validity of the path making theorems by Melan (1936, 1938) and Koiter 
(1956). On the theoretical side, it is VKRZQ� KRZ� 0HODQ¶V� WKHRUHP� has be adapted to more 
sophisticated material models than the linear elastic-ideal plastic or unlimited linear kinematical 
hardening models. Besides thermo-mechanical loading these generalisations include more general 
forms of hardening, soil-type material laws, material damage and periodic composites. 

Another issue addressed in this talk is the transmission of the theoretical achievements into 
the modern world of numerical methods: Despite the highly powerful statements of the theorems, 
no widespread use has been made of them in the past in practical engineering. This somewhat 
paradoxical situation is essentially caused by the ways how solutions are constructed when using 
these theorems. The tremendous progress in computer science and optimisation techniques however 
allows overcoming the obstacles and ways have been found to bridge the gap between Direct 
Methods and popular computational software based on step-by-step methods.  

Finally, results from various fields of engineering are presented in order to il lustrate the 
practical interest of the methodology. The lecturer will  not fail  to give a short historical overview 
honouring in particular the outstanding contribution by Polish scientists in this field and to highlight 
open questions and topics of ongoing and future research. 
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1. Introduction 

Non-linear two-dimensional (2D) models of shell  thermodynamics formulated on the shell  
base surface M  are usuall y developed by two main approaches: 1) the so-called direct 2D 
approach, and 2) the one derived from 3D continuum thermodynamics. We briefly review some 
known approaches to 2D shell  thermodynamics. It is noted that the basic 2D relations and physical 
interpretation of their ingredients vary substantiall y throughout the literature. In particular, in the 
derived approach one usuall y expands all  3D field into series of thickness coordinate and then 
assumes some kinematic, dynamic, and/or thermal constraints to make the 2D shell  relations 
simpler and more convenient for applications. In all  cases errors of such 2D shell  relations are 
practicall y indefinable. 

2. Refined resultant approach 

Simmonds [1,2] proposed to apply direct through-the-thickness integration of 3D laws of 
rational thermodynamics [3] and derived corresponding resultant 2D laws of shell  thermodynamics. 
But in [4] it was noted that the resultant balance of energy, when expressed through the resultant 
fields, is incomplete. Some part of 3D mechanical power following from self-equili brated 
distributions across thickness of the stresses, body forces and boundary tractions cannot be 
accounted by the through-the-thickness integration. Hence, an additional surface stress power called 
an interstitial working was added in [4] to the resultant balance of energy and then transferred by 
appropriate transformation into the resultant entropy inequalit y. The so refined resultant 2D 
balances of linear momentum, angular momentum, energy and 2D entropy inequalit y formulated on 
M  may be regarded as direct implications of corresponding 3D laws of rational thermodynamics 
[3] based on the Clausius-Duhem inequalit y. In the Lagrangian description these local laws satisfied 
on any part MΠ ⊂  are 
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In (1), N  and M  are the referential resultant 2D stress and couple-stress tensors, , ,ε η ψ  and q  are 

the resultant 2D internal energy, entropy, free energy and heat flux vector, oE  and oK  are the co-
rotational time derivatives of 2D strain and bending tensors, ,sw  and s are the 2D interstitial 
working vector, extra surface heat supply and extra surface entropy supply vector, respectively, θ  
is the mean referential surface temperature, and other surface fields in (1) are described in [4]. 
 The kinematic structure of the resultant shell  thermodynamics is identical to the one of 
Cosserat surface, with the deformed position vector y  and rotation tensor Q  of M  as independent 
kinematic variables of shell  motion. The structure of resultant laws (1) containing the extra surface 
field s and divergences of vector fields ,w q , reminds somewhat the one of local laws of 3D 
extended thermodynamics. 
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3. Constitutive equations 

In the 2D BVP partly described by (1), the three fields , ,θy Q  defined on M  are the 

independent thermo-kinematic field variables, the eight fields ( ), , , , , ,s,ε ηΣ ≡ N M q w s  are to be 

specified by material constitutive equations, while the 2D linear momentum l  and angular 
momentum k  by kinetic constitutive equations. If  one allows the fields Σ  to depend on histories of 

, ,θy Q  only locall y through the first time derivatives at time t  and through the first surface 
gradients at any x M∈ , then the corresponding constitutive assumption would be  

(2)                 ( )( ) , , , , , , , , , ,ˆx,t Grad Gradκ θ θΣ = Σ E K E K E K g G&& &  

where κ  is the reference placement, ( , , , ) ( )T , , ,=N M E K Q N M E K  and G  is the second surface 
gradient of θ .  
 Following Coleman and Noll  [5] it is recognized that the entropy inequalit y (1)4 plays the 

role of a restriction placed on allowable forms of the response functions ˆ
κΣ  in every thermomecha-

nic process compatible with the resultant 2D balance laws (1)1-3. As a result, it is found that 

( ), ,ˆ κψ ψ θ= E K , with the same structure of ˆκε  and ˆκη , equili brium parts of stress measures 

, , ,E Eψ ψ= =E KN M , while for dynamic parts ,D E D E= − = −N N N M M M  and other fields we 

obtain the following restriction: 

(3)                 
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Here °  and  are intrinsic double-dot tensor multiplications of various-order tensors. In case of 
thermoelastic shells the above restriction can be further simpli fied. 
 Explicit forms of material constitutive equations can be constructed by further requiring 
material frame-indifference and material symmetry. Kinetic constitutive equations for l  and k  are 
constructed using heuristic arguments. 
 Resultant 2D thermodynamics has been applied, for example, to problems of phase 
transitions in shells, [6]. 
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1. In tr oduction 

We present recent advances in the Particle Finite Element Method (PFEM) [1-3] for solving 
multidisciplinary problems in solid mechanics. 

In the PFEM the fluid and the solid domains are modelled using an updated Lagrangian 
formulation. That is, all  variables in the fluid and solid domains are assumed to be known at all  the 
nodes in the current configuration at time t. The new set of variables in both domains are sought for 
in the next or updated configuration at time t t�' . A mesh connecting the nodes (particles) is 
regenerated at each time step in order to solve the governing equations for both the fluid and solid 
problems in the standard FEM fashion. The nodes discretizing the fluid and solid domains are 
treated as material  particles which motion is tracked during the transient solution. This is useful to 
model the separation of fluid particles from the main fluid domain in a splashing wave, or soil 
particles in a bed erosion problem, and to follow their subsequent motion as individual particles.  

An advantage of the Lagrangian formulation is that the convective terms disappear from the 
fluid equations. The diff iculty is however transferred to the problem of adequately moving the mesh 
nodes.  We use a mesh regeneration procedure based on an extended Delaunay tesselation [1]. 

The PFEM is particularly suited for multidisciplinary coupled problems in mechanics such as 
fluid-structure interactions with large motions of the free surface and splashing of waves, 
heterogeneous fluid mixtures accounting for large deformations of the fluid and thermal coupling, and 
solid domains with multiple frictional contacts, surface erosion and material fragmentation [1-3]. 

 2. Basic steps of the PFEM 

1. The starting point at each time step is just the collection (cloud) of points in the fluid and solid 
domains. For instance nC denotes the cloud at time t = tn (Figure 1). 

2. Identify the boundaries for both the fluid and solid domains defining the analysis domain nV. The 
Alpha Shape method is used for the boundary definiti on [1]. 

3. Discretize the fluid and solid domains with a finite element mesh nM. 
4. Solve the coupled Lagrangian equations of motion for the fluid and the solid domains using a 

staggered scheme. Compute the variables in both domains at the next (updated) configuration. 
5. Move the mesh nodes of the fluid and solid domain to a new position n+1C. Ignore the mesh.  
6. Go back to step 1 and repeat the solution process for the next time step to obtain n+2C.  

 
The qualit y of the numerical solution depends on the discretization chosen as in the standard 

FEM. Adaptive mesh refinement techniques can be used to improve the solution. 
The PFEM is particularly suited for treating frictional-contact situations between deformable 

and rigid bodies in water. The PFEM can also be applied for modeling bed erosion due to water 
forces, as well  as transport and deposition of sediment particles [2,3]. 
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Figure 1: Scheme of steps to follow the motion of a continuum containing fluid and a solid 

subdomains using PFEM 
 

The paper presents advances in the PFEM for solving multidisciplinary coupled problems in 
solid mechanics such as: a) the interaction between multiple bodies which are floating or submerged 
in a fluid account for FSI; b) the stability of structures under the action of waves; c) the modell ing 
of the burning and melting of objects, d) transport of sediments in fluids and e) simulation of 
excavation and tunnelling processes [4], among others (Figure 2). 

 
(a) (b) 

 
 

 
Figure 2: PFEM applications. (a) Waves actaing on breakwater. (b) Falling of a solid in water 

due to erosion and failure of adjacent soil 
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 The term auxetic comes from the Greek auxetos: "which can expand". With this term we 
indicate a class of materials and structures exhibiting negative Poisson's ratio behaviour and. more 
generally, "negative material" properties (negative thermal expansion, stiffness, mass). Negative 
Poisson's ratio implies that a solid expands in one or more directions when it is tensioned along a 
specific one and, conversely, shrinks when compressed. In this lecture we will outline  all recent 
developments in the field of auxetic materials, stretching from bulk sandwich applications in 
aerospace, to the more recent nano-structures with references to both experimental and modelling 
issues. 
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 The theory of generalized continua - which was started by E. and F. Cosserat - was greatly 
developed in the period between 1960 and 1974 by creative scientists as Mindlin, Rivl in, Green, 
Sedov, Toupin, Casal, Germain and many others. 
 More recently this topic started again to attract the interest of many scientist interested in the 
application of the generalized continua theories to model phenomena where different kinds of 
boundary layers may develop and grow as for instance in plasticity, damage and fracture, phase 
transition, flow in porous media, capillarity. Also the possibility of designing "exotic" materials 
exhibiting "non standard" material behavior seems to become technologicall y possible with the 
development of nano-sciences. 
 The advancement of the theory of generalized continua has been blocked by the 
crystallization of  mechanical theories in the format due to Cauchy and Navier and considered by 
Truesdell and his epigones the only one which is acceptable. Only when the original D'Alembertian 
and Lagragian spirit has been fully recovered then the theory of generalized continua can be 
consistently formulated. 
  In this presentation it is described the conceptual frame leading to the representation 
formula for contact interactions in terms of internal state of stress valid for generalized n-th gradient 
continua. 
 The mathematical tools needed are from differential geometry and theory of distributions, 
the postulation framework is based on the principle of virtual works, the mechanical 
phenomenology is described by means of suitable tensor sets describing the  generalized stress and 
deformation states. 
 Finally some possible applications of generalized continua models are discussed: indeed 
these models seem suitable to describe many multi-scale mechanical systems presenting strong 
microscopic heterogeneities. 
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1. In tr oduction 

When subjected to high loading rates, materials and structures may fail  via fragmentation 
SURFHVV�� VKHDU� EDQGLQJ�� G\QDPLF� IDLOXUH«. Such softening mechanisms which lead to a loss of 
stress carrying capacity of structures or of materials occur in numerous situations and concerns a 
wide range of domain. One may cite the security of structures, the crash of cars as well  as high 
speed processing.  

In the present talk, we will  focus first on the occurrence of multiple necking patterns during 
dynamic extension. In a second step, we propose new insights in the development of damage and 
fracture by micro-voiding under dynamic loading. In both cases, inertia wil l be shown to be a key 
factor that controls damage growth, localization and failure in dynamic conditions. 

2. Multip le necking 

In rapid stretching, structures develop a multiple necking pattern which leads to the fracture in 
several fragments as observed on different experimental configurations by Niordson [1], Zhang and 
Ravi-Chandar [2] for example.  

We propose to concentrate on the onset of the multiple necking via linear stabili ty analyses. In 
Fressengeas and Molinari [3], it was shown that the interplay between multidimensional effects and 
inertia lead to a wavelength selection mechanism. The former approach has been revisited recently by 
Mercier and Molinari [4], adopting the formalism of Shenoy and Freund [5]. Different configurations 
were analysed: dynamic extension of plates [4], of rings and of tubes [6]. 

An ill ustration of the adopted methodology is proposed by considering a plate subjected to rapid 
extension. The material is assumed to be thermo-viscoplastic with strain hardening. Different flow 
laws have been used to describe the material response (powerlaw, Zerilli  Amstrong, Preston Tonks and 
Wallace). As an important result, an effective strain rate sensitivity which links the effect of strain 
hardening, of thermal softening and of strain rate sensitivity appears naturally in the modelli ng and is 
thought to control the development of the necking instabiliti es [7]. To validate our theoretical 
approach, rapid expansions of hemispheres have been performed by the CEA Valduc (France). The 
deformation of the hemisphere was recorded by high-speed camera. The onset of necking was 
determined with a good accuracy. A comparison between theoretical results and rapid expansions of 
hemisphere demonstrates the pertinence of our approach with regards to the number of necks and the 
strain at the onset of instabilit y. 

3. Dynamic damage 

The fracture of ductile materials is often the result of the nucleation, growth and coalescence 
of microscopic voids. In dynamic fracture, micro-voids sustain an extremely rapid expansion which 
generates strong acceleration of particles in the vicinity of cavities. These micro-inertial effects are 
thought to play an important role in the development of dynamic damage in plate impact tests (spall  
fracture). Due to the interplay between reflected waves, a large tensile stress develops in the target 
plate, and can lead to the complete fracture of the material in a few microseconds. To analyse ductile 
failure under dynamic conditions, a multiscale approach has been proposed recently [8]. The material 
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is initially free of void, but contains potential nucleation sites for microvoids. Each nucleation site is 
characterized by its own nucleation pressure. The evolution of the void radii  is governed by a hollow 
sphere model that account for micro-inertia (local radial inertia around the expanding voids).The 
proposed model has been implemented in the finite element code ABAQUS/Explicit. Simulations of 
plate impact tests have been carried out. Simulated free-surface velocity profiles were found to be in 
agreement with experimental data available in the literature. The present approach is also able to 
reproduce the porosity map and void size distribution inside the target plate [9].  

More recently, the multiscale approach has been extended for the analysis of dynamic crack 
propagation. The fracture of an axisymmetric notched bar and of a double edge cracked specimen 
were investigated. In both cases, the influence of microscale inertia is found to be significant. 
Because micro-inertia prevents damage to develop too rapidly, a regularizing effect is observed. As 
an important result, simulations based on our physicall y based model are less sensitive. Microscale 
inertia reduces the mesh sensitivi ty of the simulations. Micro-inertia is also found to lead to lower 
crack speed and higher fracture toughness, compared to situation where this contribution is 
neglected [10]. 
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1. Intr oduction 

Many testing techniques commonly used for damage assessments have been developed up to 
now. Among them we can generall y distinguish destructive and non-destructive methods [1, 2]. 
Having the parameters of destructive and non-destructive methods for damage development 
evaluation it is instructive to analyze their variation in order to find possible correlations. This is 
because of the fact that typical destructive investigations, li ke creep or fatigue tests, give the 
macroscopic parameters characterizing the li fetime, strain rate, yield point, ultimate tensile stress, 
ductilit y, etc. without any information concerning microstructural damage development and 
material microstructure variation. On the other hand, non-destructive methods provide information 
about damage at a particular time of the entire working period of an element, however, without 
sufficient information about the microstructure and how it varies with time. Therefore, it seems 
reasonable to plan damage development investigations in the form of interdisciplinary tests 
connecting results achieved using destructive and non-destructive methods with microscopic 
observations in order to find mutual correlations between their parameters. This is the main issue 
considered in this paper. 

2. Experimental procedure and results 

Damage development during creep and fatigue was investigated using destructive and non-
destructive methods in steels commonly applied in power plants (40HNMA, 13HMF and P91). In 
order to assess damage during such type processes the tests for each kind of steel were interrupted 
for a range of the selected time periods (creep) and number of cycles (fatigue). The standard tension 
tests of specimens prestrained due to creep or fatigue were carried out as destructive method of 
damage assessment. Subsequently, an evolution of the selected tensile parameters was taken into 
account for damage identification. Taking into account the results for the pre-fatigued 13HMF steel, 
Fig.1, it is easy to note that this material in terms of typical stress parameters is almost insensitive to 
fatigue prestraining, i.e. the yield point and ultimate tensile stress variations are rather small. An 
opposite effect can be observed for the same material prestrained under creep conditions. In this 
case the prior deformation leads to the hardening effect. Details of investigations on the 40HNMA 
and P91 steels were described earlier [1, 2]. The results for creep prestrained 40HNMA steel 
exhibited significant effect of softening. For all  steels in question the same effect was achieved in 
the case of prestraining induced by means of plastic deformation at room temperature, i.e. 
hardening. 

The ultrasonic and magnetic techniques were used as the non-destructive methods for damage 
evaluation. The results indicate that the acoustic birefringence, Ubpp - measure of the MBE 
(magnetic Barkhausen emission) and Uapp - measure of the MAE (magnetoacoustic emission) are 
sensitive to the amount of prior deformation. Having parameters of destructive and non-destructive 
methods of damage assessments their mutual relationships were considered in order to find their 
character. The results exhibited that magnetic techniques can be very sensitive to degradation 
development for the small strain levels (up to 2%), and almost insensitive above that value. The 
ultrasonic techniques gave a completely opposite assessment: very poor sensitivi ty for small 
deformations and good for deformations greater than 2%. 
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In the case of material prestrained due to fatigue the destructive tests gave no clear assessment of 
material degradation, because the basic mechanical parameters (i.e. yield point and ultimate tensile 
stress) underwent to increase. Therefore, in order to assess a degree of fatigue damage the 
alternative techniques were proposed. The Wöhler diagram was determined as the first step of 
fatigue tests on the 13HMF and P91 steels. It represents the number of cycles necessary to failure 
under given stress amplitude. In the case of 13HMF steel this diagram was determined for the 
material in the as-received state and after exploitation (80 000h). Both Wöhler diagrams differ 
significantly, identifying a fatigue strength reduction due to the loading history applied. In the 
second step of fatigue investigations the tests were performed in order to assess variations of the 
hysteresis loop width under constant stress amplitude. 

(a)                                                                   (b) 
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Fig. 1.  Tensile characteristics after fatigue (a) and creep (b) prestraining for the 13HMF steel  

(numbers in the right diagram identify time to stop of creep test: 1 - 149h, 2 - 300h, 3 - 360h, 4 - 
407h, 5 - 441h, 6 - 587h, 7 - 664h, 8 - 796h and 9 -1720h; 0 ± as-received material). 

The results of these tests enabled damage identification under fatigue conditions. Two basic types 
of mechanisms in terms of the damage development can be distinguished. The first group is 
described by the ratcheting, whereas the second one by cyclic plasticity. In both cases, the strain 
changes measured for the entire sample volume are the sum of local deformations developing 
around defects in the form of non-metall ic inclusions and voids (first group) or developing slips 
within individual grains (second group). 
 
3. Conclusion 

The results of parallel destructive and non-destructive tests on the prestrained power 
engineering steels enabled determination of damage sensitive parameters which were afterwards 
correlated, thus giving new tools for better predictions of damage development in materials 
subjected to creep or fatigue. 
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 The surface growth of biological tissues is presently analyzed at the continuum scale of 
tissue elements, adopting the framework of the thermodynamics of surfaces. Growth is assumed to 
occur in a moving referential configuration (called the natural configuration), considered as an open 
evolving domain exchanging mass, work, and nutrients with its environment. The growing surface 
is endowed with a superficial excess concentration of moles, which is ruled by an appropriate 
kinetic equation. From a thermodynamic framework of surface growth, the equilibrium equations 
are derived in material format from a suitable thermodynamic potential, highlighting the material 
surface forces for growth based on a surface Eshelby stress. Those forces depend upon a surface 
Eshelby stress, the curvature tensor of the growing surface, the gradient of the chemical potential of 
nutrients, and a surface force field. Application of the developed formalism to bone external 
remodeling highlights the interplay between transport phenomena and generation of surface 
mechanical forces. The model is able to describe both bone growth and resorption, according to the 
respective magnitude of the chemical and mechanical contributions to the material surface driving 
force for growth. Finite element simulations of the evolution of the shape of human femur under 
external stress due to external remodeling il lustrate the model.  
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1. Introduction 

Some flow parameters influence pathological changes in the arteries. Some of those 
parameters are very diff icult to measure due to technical problems. The most renown parameter is 
the Wall  Shear Stress τ, which generates a reaction in the structure of the vessel walls and also has a 
major influence on the thickness of the wall . 

One of the methods to assess most of the parameters is by creating computer models. We have 
proposed a method to create a computer model of the flow in the common carotid artery based on 
2D ultrasound images.  

2. Measurements  

Input data has been acquired using an automatic ultrasound wall  tracking system (ART.LAB, 
Esaote, Maastricht, Netherlands). The system automaticall y identifies walls of the vessel and 
calculates the diameter and arterial wall  thickness, defined as the Intima Media Thickness (IMT). 
Data is gathered with a frequency of around 600Hz, and the spatial resolution in 23µm. This data 
has been used to generate a 3D geometry of the artery. For the purpose of the computer model the 
artery has been assumed to be a straight tube with the length of 75mm and the diameter that is 
assessed for every patient. Thanks to high time and special resolution this data can be used to model 
the pulsate flow condition. 

3. Measurement analysis  

To recreate blood flow conditions, vessel walls were assumed to have linear mechanical 
properties. It has been shown that such an assumption to the stress-strain relationship for the 
Common Carotid Artery (CCA) does not generate a significant error [1]. Local arterial blood 
pressure was assessed with the assumption that the diastolic ( ) and mean blood pressure (MAP) is 
constant throughout the entire arterial system. The pressure waveform was calculated by rescaling 
the distention waveform to pressure values: 

(1)  
 

 

Blood flow was next calculated using a 2-parameter Windkessel model: 

(2)  
 

 

The parameters C and R model have been calculated by solving the above equation under the 
assumption that the average cardiac output is 100ml per cycle and 17% of the blood goes to the 
brain. It also has been assumed that in the end of the cardiac cycle, there is no blood flow.  

The Young’s Modulus for the arterial walls was calculated using the pulse pressure , 
diastolic (minimal) diameter  and wall  thickness . Vessel wall  tissues are incompressible thus 
the Poissons coeff icient was assumed  [2]. 
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(3)  
 

 

Also local pulse wave velocity was calculated using the Moens-Korteweg equation [3]. The 
blood itself is has been assumed to be non-Newtonian with viscosity obeying the Power Law: 

(4)    

where according to [4] best coeff icient values are  and . The 
densities of the blood and vessel walls are very close and were assumed be constant. The density of 
blood was assumed , and similarly the density of the vessel wall  was   

4. Model 

The computational model was generated and calculated using ANSYS Workbench. The fluid 
domain was solved using CFX and the solid domain was calculated using ANSYS. The coupling 
between two domains was set at the level of momentum exchange with no heat transfer. Thus the 
governing equations are reduced to the momentum and continuity equations [5]. Additionall y the 
model allows change in the geometry, and according to two-way fluid structure interaction 
coupling, change in the shape of the walls also cause mesh displacement in the fluid. The coupling 
method required the use of Arbitrary Lagrangian-Euler (ALE) formulation to solve the 
Navier-Stokes equations in a moving domain. This coupling method allows to take into account 
changes of the blood flow and its influence on artery walls throughout the entire heart cycle.  

The nodes of the vessel wall  have been fixed on both inlet and outlet end. This has forced the 
increase of the model length. Patient data has been collected by a 2,5 cm long probe and the 
remaining 5cm have been added to compensate for the boundary conditions at the ends. It was 
necessary for the flow to stabili ze to avoid the influence of the nozzle created at the inlet by the 
distention of the artery. The remaining nodes were taken to be free. 

Due to a pulsate characteristic of the flow with a possibilit y of returning flow, opening 
conditions have been placed at the inlet and outlet of the fluid domain. Relative total pressure has 
been placed at the inlet and mass flow normal to the boundary has been placed at the outlet. The 
start of the increase in pressure at the outflow has been shifted in the time by the amount of time 
necessary for the pulse wave to reach the end of the model vessel.  

5. Results 

The calculations of the model showed that the distention of the walls in the model is not 
significantly different from the measured distention. This shows that the proposed method can be 
used to analyze flow parameters in the model instead of carrying out expensive and patient time 
consuming measurements.  
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1. Introduction

This paper deals with study of modeling fracture in corotical bone using the Gurson-Tvergaard

damage model [1, 2]. Bone tissue is very complicated and interesting structure. From mechanical

point of view bone could be described as a composite material, because it is composed by hydroxya-

patite, collagen, small amounts of proteoglycans, noncollagenous proteins and water. In general it is

a heterogeneous, porous and anisotropic material. Although porosity can vary continuously from 5 to

95%, most bone tissues have either very low or very high porosity [3].

In this paper, the main idea is focused on long bones (for example tibial bone), usually named

corotical or compact bone with 5-10% porosity. There are few types of pores. Vascular porosity

is the largest (50 µm diameter), formed by the Haversian canals (aligned with the long axis of the

bone) and Volkmanns’s canals (transverse canals connecting Haversian canals) with capillaries and

nerves. Other porosities are associated with lacunae (cavities connected through small canals known

as canaliculi) and with the space between collagen and hydroxyapatite (very small, around 10 nm).

Cortical bone consists of cylindrical structures known as osteons or Haversian systems, with a diam-

eter of about 200 µm formed by cylindrical lamellae surrounding the Haversian canal. The boundary

between the osteon and the surrounding bone is know as the cement line [4].

Poroelasticity is theory about the interactions between solid with porous and fluid or gas flow

saturated porous medium. The theory was proposed by Biot in 1935. It was a extension of classical

soil consolidation models. The theory has been widely applied to geotechnical problems beyond soil

consolidation, most notably problems in rock mechanics [5]. From the macroscopic point of view,

especially focused on the structure of material like bone and soil, there are lots of similarities. Both

of them, contains some solid material, fluids and gas. In soil fluid phase is a water, in bones fluid is a

blood or another fluid in human body. All facts considered, the theory of poroelasticity is possible to

used for modeling bones and in this paper it is used too.

2. Formulation of the problem

Poroelasticity is described by two equations. The first of them is the consolidation equation (1),

as follows:

(1) c∇2p = −γwṗ, c = k
E

3 (1− 2ν)

where: p – pressure, γw – specific gravity of fluid, E – Young modulus, ν – Poisson ratio and k is

a coefficient of filtration. The mechanical part of the formulation is described by classical elasticity

equations with Terzghagi law (2) as a coupled between porous and elasticity theories [6].

(2) σ′

ij = σe
ij − pδij

Following the clinical literature, there are two main causes of fractures in bones: an external

impact produced or, quite common, in elderly people with osteoporosis. Another important cause of

pathologic fractures are bone tumors, which modify bone mechanical properties and produce stress

concentrators. Removing the tumor usually increases the risk of fracture [3].
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In this paper the fracture is modeling by the Gurson-Tvergaard formulation, where yield poten-

tial is as follows:

(3) F (σij, σs, f) =
σ2
eq

σ2
s

+ 2q1f
∗

v cosh

(

3

2
q2
σH

σs

)

− (1 + q3f
∗

v )
2 = 0

where f ∗

v is a void fraction defined as:

(4) f ∗

v =

{

fv if fv ≤ fcr
fcr + κ (fv − fcr) if fv > fcr

Symbols σeq =

(

3

2
seijs

e
ij

)

1

2
means equivalent stress tensor of elastic part, σH =

1

3
σe
kk is a mean

stress of elastic part, f =
Vp − Vs

Vs

, where Vp and Vs is a volume of porous and solid and σs = σy +R

is actual yield stress.

The void fraction could be growth, because the porous can be connected or the new void can be

created. Previous process is described by equation (5):

(5) ḟv = ḟnucl + ḟgrowth

where:

(6)
ḟnucl = Anṗ

ḟgrowth = (1− fv) ε̇
p

kk

Nucleation and growth of voids is related to the plastic process, where ṗ is a cumulative plastic strain

and ε̇
p

kk is a mean plastic strain [7, 1, 2].
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1. Introduction 

The blood flow in cardiovascular systems can be full y described as uniform fluid on 
macroscopic level by Navier±Stokes equations [1]. However, in the case of small veins or medical 
devices this approach it is not accurate. It is needed to take into account a non-homogeneous 
structure and thixotropic properties of blood. The deformation of red blood cells (RBC) influence 
blood ability to transport oxygen and carbon, as well  as can cause even the erythrocytes destruction. 
The concentrated suspension of deformable RBC in a macromolecule environment is a viscoelastic 
material that experiences a loading history. Thixotropic behavior is explained by changes in blood 
internal structure, which is experimentally sheared, thereby by the kinetics of both reversible RBC 
aggregation and deformation, with their time scales. The aim of this paper is to provide 
a mathematical model of deformable membrane of RBC, as well  as present simulation results. 

2. Membrane model  

The RBC shape represents an equilibrium configuration that minimizes the curvature energy 
of a closed surface for given surface area and volume with a geometrical asymmetry. The 
erythrocyte experiences large reversible deformations during its li fe span due to changes of fluids 
velocity. A dimensionless parameter, the capil lary number, is influencing an erythrocytes 
deformability:  

(1)
  

G

r
CaG

JP �
{  

where � is the viscosity, J�  is the fluid shear rate, r is the particle radius and G is membrane shear 
modulus. The motion of RBC depends on the shear rate, the viscosity ratio between the inner and 
outer fluids of RBCs, the material properties of the elastic membrane and other physical constants. 
The most popular neo-Hookean, Skalak, and Mooney±Rivl in laws for membrane deformation are 
presented as well  as main differences between these models. A three-dimensional a spectrin-link 
membrane method [2,3] (SL) is used in this paper to describe the deformable behavior of the RBCs. 
Based on this estimation, the RBC membrane can be described as triangulated surface. The total 
energy of the erythrocyte membrane is the sum of the total energy for stretch, compression, change 
of surface area and the total energy for the bending. Each particle in membrane movement is 
described by Newton equations which minimalize forces existing in the system. Those forces 
determine external forces of fl uid±structure and structure-structure interaction and Helmholtz free 
energy of membrane. Due to need of providing coarse grids the procedure developed by Pivkin and 
Karniadakis [5] was applied. 

3. Numerical model 

The formation of RBC clusters cannot be handle by classical computational fluid dynamics 
methods. The following simplifications were made: RBCs are considered as phase with specifi c 
elastic properties, the plasma and rest of the blood are represented by a uniform suspension. The 
lattice-Boltzmann method (LBM) is used to solve a discretized Boltzmann equation which 
converges to the Navier±Stokes equation. Parameters of each kind of energy in SL depend on 
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Boltzmann constant and temperature, however, in this paper they are set constant. Simulation was 
conducted due to CaG change based on change of the effective suspension viscosity. The RBC 
shape is initiall y set to biconcave with a transmural pressure and different natural states of the 
membrane with the same initial shape are examined in numerical simulations of RBC motion.  

Figure 1. On left side (a) the representation of RBC membrane in SL, on right side (b,c): cross 
sections results of deformation due to different velocities distribution at 0, 200 and 400 time steps. 

The preliminary results for single RBC deformation are presented at Fig.1a. The initial mesh 
was obtained by minimization of the Helmholtz free energy based on 500 nodes structure. The 
boundary conditions are treated as periodic so that the RBC can reach a steady-VWDWH�FRQ¿JXUDWLRQ 
without need of big computational space. At Fig.1b the RBC tumbling at low (0.5sí�) shear rates are 
considered. The RBC dynamics in Poiseuille flow in tube with a diameter comparable with the RBC 
diameter was show at Fig.1c. The transmission from biconcave shape to parachute shape is 
observed. 

4. Summary 

Presented studies are applicable to various conditions of blood flow such as hematocrit 
change, flow velocity and vessel geometry. The macroscopic multiple blood cells flow is affected 
by the motions of a single erythrocyte. That indicates needs of providing detailed model, which 
makes able to understanding multiscale mechanics of blood flow in a micro-vessel network system. 
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1. Introduction

It is believed that the mechanical environment that cells experience is very important to their be-
haviour. A change of stresses in a cancer cell can cause that it starts to behave more like ahealthy
one [1].
A biological tissue made of a collection of cells can be modeled as a discrete system similar to a
granular media. Since each cell i s deformable and prestressed, we propose adedicated DEM- FEM
model of granular medium in which each particle ismodeled througha tensegrity structure.

2. Tensegrity model of a cell

Since we aim to model a pieceof tissue of a range of one milli on cells, we employ the simplest
possible model for the cell . This is the icosahedron based tensegrity structure consisting of tendons
(fair) and struts (dark) at first instance, Fig. 1 (a). The model enriched with membranes is shown in
theFig. 1 (b). The exampleof group of cells is shown in Fig. 1 (c).

(a) (b) (c)
Fig. 1. Single cell (a), cell with mebranes (b), group of cells (c)

3. Multibody approach

The vehicle for the model is the LMGC90 software [2], [3] in which we use the tensegrity model of
the cell which, in fact, is a deformable viscoelastic particles model. In this approach, we simultane-
ously have to compute the contact between the particles and the stresses in the particles at each time
instance.
Dynamics is written using the framework proposed by Moreau and Jean (see[3] for details). The set
of equationsof motion including the initial and theboundary conditions is of the form :

M(q̇i+1 − q̇i) =
∫ ti+1

ti

(F(q, q̇, s) + P(s))ds+ pi+1(1)

qi+1 = qi +
∫ ti+1

ti

q̇ds(2)

whereM isthemassmatrix, q isthevector of generalized displacements, P(t) isthevector of external
forces, F(q, q̇, t) is the vector of internal forces including the inertia terms and pi+1 is the vector of
impulse resulting from contactsover the timestep.
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While applyingaNewton-Raphson procedureto thepreviousnonlinear system, which wasintegrated
throughaθ scheme, leads to the followingequationwhich will beused in theNSCD method:

M̃
k
∆q̇k+1

i = pk
free + pk+1

i+1(3)

The effectivemassmatrix M̃
k

writesas follows

M̃
k
= M + h2θ2Kk(4)

where h is the time increment, θ is the integration coefficient [0.5, 1] and K is the tangent stiffness.
The θ coefficient is usually taken as 0.5 yielding the Crank-Nicholson integration rule. The effective
impulsevector of forces freeof contact isof the form

pk
free = M̃

k
q̇k
i+1 + M(q̇i − q̇k

i+1) + h[(1− θ)(Fi + Pi) + θ(Fk
i+1 + Pi+1)](5)

Contact impulses are computed using the NSCD method implemented in the LMGC90 software.
First it will perform contacts detection between cells. Then the previous dynamics equations will be
expressed in term of contacts unknowns (gap or relative velocity and contact impulse). Afterward a
Non Linear Gauss-Seidel methodcomputes the contacts impulses. Finally, the resulting impulse on
cellsnodesdueto contactsimpulsesare added to thedynamicsequationto computethenew velocities
and positions.
Eventually aparallel version of theNSCD methodcan beused [2].

4. Concluding remarks

The presented scheme, based ona coupling of LMGC90 software and a dedicated modeling of cells,
has been joined to an agent model able to take into account the effect of the stressevolution in the
growing tissue [4]. The agent modeling is based on the FLAME framework (Flexible Large-scale
Agent Modelli ngEnvironment) [5].
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1. Introduction 

Restorations with the application of implants are effective and commonly used in dental 
treatment. However, despite the high rate of long term success many problems are still  reported. 
The paper presents the optimization procedure of commonly used two-component implantology 
system in terms of problems observed in its utili zation and implantation, namely: fatigue and static 
failure [2], screw loosening, tightening inaccuracy and tightness. The simpli fied, axisymmetric FE 
model, yet capable to simulate asymmetric deformation, is utili zed in order to calculate stress/strain 
field. The procedures for estimation of crucial design features based on the simpli fied model are 
also provided. The formulated multiobjective optimization task is solved using weighted sum 
approach where the weights estimation is done with Analytic Hierarchy Process (AHP) [3] on the 
basis of survey carried out among the group of medical engineers, producers and practitioners. The 
weighted objective function is minimized with the use of genetic algorithm hybridized with 
Hooke-Jevees procedures. 

a)  b)  

Figure 1. Dental implant geometry: a) the initial model with assumed geometric design parameters, 
b) the best solution obtained. 

2. Model 

The two-component implantological system is considered (OSTEOPLANT). It consists of 
root and abutment which are connected with a non-rotational hexagonal slot and assembled 
by a screw (Fig. 1a). The geometry of implant is simpli fied to axisymmetric, however the loads and 
response are asymmetric. It is done with the use of cylindrical finite elements, which utili ze 
standard isoparametric interpolation in the radial – symmetry axis plane and the trigonometric 
interpolation function with respect to the angle of revolution. The formulation enables to describe a 
nonlinear asymmetric deformation of axisymmetric geometry due to asymmetric loads. It 
simultaneously significantly reduces the size of the problem (ca. 94 000 dof) in comparison with 
a full  three dimensional model (ca. 600 000 dof). All  components of the implant are made of 
medical titanium alloys. In the FE model the isotropic, non-linear elastic-plastic characteristics of 
material models are taken into account. The contact conditions are defined between all  the 
components using penalty method as the contact constraint enforcement. Tangential surface 
behavior follows classical isotropic Coulomb friction model. The friction coeff icient is the same for 
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all  contact pairs and amounts to 0.19. 
The loads are applied in two steps. The first step is simulation of tightening. The pre-tension 

force is defined in the middle part of the screw and its value is calculated based on the analytical 
equation [1]. The second step is bending, which is caused by the worst component of service load, 
perpendicular to axisymmetric axis. The bending force (30N, 60N) is applied to the tip of abutment 
by means of a surface-based coupling constrains. 

Seven geometrical parameters and screw preload are defined as variables (Fig. 1a). For each 
design parameter range and, due to GA requirements, number of bit for encoding are defined. The 
ranges come from both, the geometry limitations and manufacture requirements. 

3. Optimization procedure 

The optimization bases on complex, nonlinear FE model, which reliabilit y does not ensure the 
result for all  configurations of design parameters. Therefore, genetic algorithm (GA) which is 
resistant to non-continuous design space is proposed. Unlike conventional optimization techniques, 
GAs explore simultaneously the entire design space and therefore are likely to reach the global 
optimum. Unfortunately, the algorithm is computationall y expensive in the same time, especiall y if 
a precise solution is expected. As a result, the hybrid method is used in order to provide both global 
search of the design space and a precise solution. The presented approach starts with the genetic 
processing and after a few iterations the best solution is assumed to be the starting point of 
Hooke-Jevees procedure. The procedure stops when suff icient accuracy of the solution is achieved. 
The static, exterior penalty approach is used in order to control the constraints. 

4. Results 

The optimization process was carried out three times. All  obtained solutions fulfill  assumed 
constraints and differ from each other. The differences consider either the geometry or the screw 
preload and influence the objective function values. Therefore, it can be concluded that all  the 
solutions represent local minima. Fig. 1b presents the geometry of the best solution. The effective 
stresses amplitude increased by 91%, static resistance is higher by 63%, screw loosening moment 
by 2% while tightening inaccuracy worsen by 9%. None of the constraints applied is violated 
(tightness, tightening moment). 

5. Conclusions 

The complex dental implant model was optimized based on FE analyses successfull y 
incorporated into the hybrid optimization procedure (genetic and Hooke-Jevees algorithms). The 
study and the final results give evidence that presented method is eff icient and can be used for 
dental implant improvement. The obtained proposition of new design improves fatigue li fe, static 
resistance and screw loosening worsening tightening inaccuracy at the same time.  
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1. Introduction  

Many articles about modelli ng of stress state in the human skull  appear in journals [1], [2]. 
Most of the articles are about stress state as a result of complex external loads occurring after e.g. 
communication accidents. The range of bone fractures are depend on many factors, e.g. on size the 
body which contact with head during an accident. The direction of external force applied on human 
head is very important too. There are many classifications of human skull  (calvarium) traumas. 
Generall y we are talk about central and lateral traumas. In this article are presented some results of 
numerical simulation stress state occurring during lateral traumas. 

2. Geometrical model 

To perform numerical calculation the geometrical model of the human cranium was done. 
This model was created on basis of data acquired during computer tomography (CT). A patient 
(43 years, without bone pathology) was examined in Warsaw Medical University. As a result, 85 
DICOM images were obtained (3 mm distance between slices, thickness of single layer – 5 mm). 

Then, the set of data was transferred into MIMICS 10.1 system to perform the geometrical 
model. All  surfaces of the virtual model (outer and internal) were described by triangular surfaces in 
STL format. A preliminary model was optimized to reduce of triangles number and its shape was 
modified. 

3. Numerical model 

The final geometrical model was transferred into ABAQUS system in order to perform 
numerical simulations. In these investigations two different external loadings were assumed. These 
loadings were applied onto the model as is shown on Fig. 1. The first so-called “high”  (Fig. 1a, b) – 
the external force is applied on frontal bone (os frontale) on the region shown on Fig. 1b. The 
second one is so-called “ low” is shown of the Fig. 1c and d – the force is applied on the zygoma (os 
zygomatiucum). Calculations were performed for two different values of static resultant external 
loadings (9500N and 15000N). Values of external loads were assumed from literature [3]. 

 

a) b) 

 

c) d) 

 
Figure 1. Models of external loads: a) directions of applied loads, 

 b) “narrow” model, c) “wide” model 
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The mesh of finite element method model consists of 50274 tetrahedral elements. In a whole 
model cortical bone material was assumed, material data were taken from [4]. It is a simpli fication, 
because the CT data not allowed to exact separation between cortical and sponge bone. In an 
additional simpli fication the orthotropic material model was assumed. Then the boundary 
conditions were assumed and simulations were performed. 

4. Results 

As a result of numerical simulations stress and strain distributions were obtained. Some stress 
distributions after external loading value 9500N applied on “high”  and “ low” models are shown on 
Fig. 2. 

The Fig. 2 show stress distribution from inside view of the skull . It is shown that high stresses 
are concentrated mainly in the nasal bone (os nosale). It may be an effect of small  thickness of these 
bones.  

      

 a)    b) 

Fig. 2. Examples of the results stresses in: the “high”  (a) and “ low” (b) models respectively 

5. Discussion 

In this work are presented some results of the first stage of researches. Some conclusions after 
these calculations: 

• it is necessity to prepare a new geometrical model of human scull  on the basis of computer 
tomography to obtain more exact results, 

• a new model may reflect different materials of the cranium. The division on cortical, spongy 
bone as well  as tooth material may be assumed in this model. 
The next calculation may assume that the forces applied on the model are depending on time. 
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1. General

Thermo-plasticity is a well -established theory, rooted in thermodynamics. However, there is
still need for formulation of fully coupled nonlinear thermo-plastic models and their robust imple-
mentation. Thepaper presents such a fairly general formulation, composed of theplastic flow theory
with any yield function and hardening, fully coupled to non-stationary heat flow equations via the
dependenceof mechanical variablesontemperature andthrough plastic dissipation. Linear kinematic
relationsare assumed.

The model is implemented in the software environment FEMDK, developed by the authors
for the analysis of nonlinear and time-dependent coupled problems of physics [1]. The application
domain are engineering materials, see for instance [2, 3]. In the context of thermo-plasticity the
applicationsextend to the analysisof thermal softening of solids [4].

2. Summary of computational thermo-plasticity

The aim isto incorporate arbitrary nonlinearity (within small -strain kinematics) andcouplingin
the analysis. This means that, in addition to the elastic-plastic response, the mechanical and thermal
properties (e.g. Young’smodulusand/or conductivity) are considered as temperature-dependent.

We start the analysis by writing in Voigt’s notation the standard equation of equili brium (mo-
mentum balance), valid at each point of the considered isotropic solid:

(1) LT
σ + ρb = 0

whereL isasuitablematrix of differential operators,σ is thestresstensor, ρ is thematerial density,b
is thegravity vector. The equationshould be complemented by proper boundary conditions. It can be
written in termsof displacement vector u andrelativetemperatureθ, which areusually thediscretized
fundamental unknowns in thermo-mechanical problems.

The stressσ is derived from a certain free energy functional and is related to the displacement
vector and temperature according to:

(2) σ = E(Lu− ǫ
p
− αθΠ) , E = E(θ)

where ǫ
p are plastic strains, E is the elasticity matrix which depends on θ, α is the expansion coeffi-

cient, Π represents theunit tensor. The classical plastic flow theory with work hardening isassumed.
Additionally, thermal softeningcan be admitted.

Next, thebalance equation for non-stationary heat flow is written:

(3) ρcθ̇ +∇
Tq = r

where c the specific heat capacity, q the heat flux density, r the heat source density. Again, proper
boundary conditions have to be specified, and moreover an initial condition for the θ field is needed.
Theheat flux density isusually expressed in termsof temperaturegradient (Fourier’s law):

(4) q = −Λ∇θ , Λ = Λ(θ)
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where Λ is the conductivity matrix which can depend onθ. Moreover, the heat source density is
related to plastic dissipation, cf. [7, 4].

A generalization of the mathematical formulation of multi -field problems can be found for
instance in [3], while the extension of the theory to multicomponent materials (together with its
thermodynamic background) is presented for instance in [6]. The local mathematical model can be
reworked into aglobal weak formulation using theweighted residual approach, see e.g. [5].

The full coupling of momentum balanceto heat conduction leads to a monolithic incremental-
iterative scheme. The backward Euler algorithm is employed to integrate over time and the gen-
eralized return mapping algorithm is applied to solve the plasticity equations. The weak-forms of
equations 1 and 3 are linearized at the current time step t + ∆t. The fundamental unknown fields
of displacement and temperature are discretized using asuitablefinite element interpolation between
nodal values ǔ and θ̌, leading to theset of incremental equations:

(5)

[

Kuu Kuθ

Kθu Kθθ

] [

δǔ

δθ̌

]

=

[

Ru

Rθ

]

where δ denotes the corrective increment of aquantity, Ru andRθ are respectiveresidual terms.

3. Simulation environment FEMDK

In order to manage the complexity and the development costs of a simulation system, it has
been decided to use ready components, in particular Open Source Software. Such component pro-
gramming is enabled by the appearanceof many comprehensive, high quality softwarepackages and
improvement of standard interfaces between components. The purpose of the developed package
FEMDK is to solve multi -field problems that occur during the analysis of degradation phenomena
of engineering materials. The task is to build an environment which would facilit ate fast creation of
tools for solvingcoupled problems. The software should satisfy various requirements regarding data
formats, geometric models, interpolation, solvers, etc. The components of the constructed package
FEMDK arebriefly presented in [1]. Theuseful featuresof FEMDK are: arbitrary number of coupled
fields, in other wordsarbitrary number of degreesof freedom per node(which also allows for XFEM
extension); possibilit y of using different finite elementsavailable in GetFEM++ library and different
meshes for different discretized fields; possibilit y of selecting particular algorithms, for instancefor
timeor spaceintegration.
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1. Introduction 

The purpose of this work is to introduce a novel approach to treat two-dimensional 
elastoplastic problems by means of an adaptive and automatic coupling strategy using the main 
advantages of the Boundary Element Method (BEM) and the Finite Element Method (FEM).  

The correct and more realistic modeling (accurate results) combined to a simple geometry 
representation (easy mesh generation) is indispensable for eff icient design of complex structures. 
Moreover, non-linear behavior should be considered for a better description of the material 
properties. The choice of the numerical tool to model these structures depends on many variants and 
there are no absolute advantages of one method over another. The main advantage of the BEM over 
the other methods is the reduction of the model dimension by one, leading to a much simpler mesh 
generation. However, the most common approach for elastoplasticity with the BEM makes use of 
pre-defined internal cells, which is not as eff icient as the FEM in dealing with non-linear material. 

Overcoming the drawbacks and to benefit of the advantages of each numerical method, the 
general idea proposed in this work concerns in the initial modeling of the structure using only the 
BEM, i.e. the proposed technique deals with such non-linear effects in a straightforward manner, 
without requiring a priori information on the plastic domain, requiring just the boundary 
discretization of the model. 

2. Proposed Procedure 

In the following, the regions where non-linear behavior is expected are detected direct and 
automaticall y based on a post-processing technique. Finall y, these regions are fill ed with finite 
elements, using an automatic mesh generator, and then the coupled non-linear problem is solved 
taking the advantages of both BEM and FEM, where they are more useful, as shown in Figure 1. 

The starting point of the proposed technique is a boundary element modeling of the problem, 
with the purpose of performing a simple linear elastic analysis, since the BEM is a user friendly and 
eff icient method for a continuum. In addition, the method has the advantage that the results inside 
the domain are functions (over this domain) which exactly satisfy the differential equation of the 
problem (in elasticity). Another advantage is that it is possible to derivates these functions without 
deteriorating the qualit y (which is not the case in the FEM). Indeed, this is a great benefit when 
computing the interface between different regions, which corresponds to the next step of the 
proposed technique. 

 

Figure 1: Boundary and finite element discretization for the elastic and plastic regions, respectively. 
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Therefore, regions inside the domain, which should contain nonlinearities, are first estimated 
by means of a post-processing algorithm based on the direct and automatic identification of 
isocurves and isobands [1]. In the case of elastoplasticity, the contours of the plastic zones are 
defined by isocurve plotted for the yield functions (the limit where the failure condition has been 
violated), as ill ustrated in Figure 2. For more details on the post-processing technique the reader is 
encouraged to consult [1].  

Once these regions have been determined, the plastic zones are automaticall y modeled with 
the FEM, which is a powerful method in dealing with nonlinear problems, and thus, the problem is 
finall y solved by means of a BEM/FEM coupling procedure. 

3. Results 

In order to validate the accuracy, eff iciency and usabilit y of the proposed technique, a 
tunneling problem is solved and compared to results from another numerical model, as shown in 
Figure 2. 

 

Figure 2: FEM model comparing the yield functions obtained with BEM: 1st iteration and 
converged solution. 

4. References 

[1] A.M.B. Pereira and M. Noronha (2010). Post-processing and visualization techniques in 2D 
boundary element analysis, Engineering with Computers, 26, 35–47. 

 



40 38th Solid Mechanics Conference, Warsaw, Aug. 27–31, 2012

CONSTITUTIVE RUBBER MATERIAL MODELS COMPARISON STUDIES IN QUASI-
STATIC LOADING  

 
 

P. Baranowski, J. Małachowski, Ł. Mazurkiewicz and K. Damaziak 
Department of Mechanics and Applied Computer Science, Milit ary University of Technology, 

S. Kaliskiego 2 Street, 00-908 Warsaw, Poland 
 

1. Abstract 

Presented paper shows subsequent stages of vehicle tire coupons mechanical characteristics 
numerical assessment, with experimental data taking into consideration. Experimental uniaxial 
tension tests were carried out on the fatigue machine with the assistance of high-speed camera and 
special software for strain measurements. Obtained stress-strain curves were applied into the chosen 
constitutive rubber material models which are available in the LS-Dyna code. In the next stages 
numerical quasi-static analyses of tension tests were performed, which allowed to compare 
implemented material laws and validate obtained results with experimental ones. 

2. Introduction 

Rubber and rubber-like materials are very popular in many areas of economy and for sure 
within it there is the automotive industry, where materials and rubber-based composites are often 
used to produce tires with high strength and durabilit y. There is no doupt that such popularity is 
caused by its mechanical characteristics, including abilit y to reversible deformation under the 
loading of mechanical forces. Because of their low modulus and excellent damping characteristics 
rubbery materials are often used in energy absorption structures like shock absorbers or isolations. 
Therefore, their mechanical properties in various operational conditions have much importance in 
engineering applications. After material development it is advisable to conduct both numerical and 
experimental material characteristics assessment and validation of the specific rubber (rubber-like) 
material.  

Mechanical properties of rubber in static experimental tests were effectively determined and 
understood [1,2] with both compression and tension characteristics taking into consideration. 
Numerical simulations of elastomeric structures and also its constitutive material modelli ng are 
subjects of many engineering problems. It can be seen that major commercial FEA software offer a 
large number of materials constitutive laws for rubbery materials. Generall y, in quasi-static area 
elastomers can be considered as incompressible (or nearly-incompressible) materials. Rubber 
constitutive relations, which are essential in modelli ng tires, i.e. the relationship between stress and 
strain, are formulated within the nonlinear elasticity theory, called hyperelasticity. For this kind of 
strongly non-linear material a large number of constitutive models are available in most of 
programs with LS-Dyna code among them. Authors of the papers [3,4] investigated the Blatz-Ko 
material law, in [5,6] the Mooney-Rivlin constitutive equation was implemented, Arruda and Boyce 
model was applied in [7,8], whereas Ogden rubber material was effectively modelled in [9,10].  

The authors of this paper present subsequent stages of vehicle tire coupons mechanical 
characteristics numerical assessment, with experimental data taking into consideration. 
Experimental uniaxial tension tests were carried out on the fatigue machine with the assistance of 
high-speed camera and special software for strain measurements. Obtained stress-strain curves were 
applied into the chosen constitutive rubber material models which are available in the LS-Dyna 
code. In the next stages numerical quasi-static analyses of tension tests were performed with 
particular emphasis put on the differences outline between chosen constitutive rubber material 
models. Moreover, comparison studies of implemented material laws were carried out with 
subsequent validation of obtained results with experimental data. 
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3. Numerical modelli ng and results 

At this stage of investigations there was necessary to develop numerical models of tire rubber 
coupons for tension tests with the same geometric dimensions as in the experimental tests. FE 
coupons were modelled using Belytschko-Tsay shell  elements [11]. Mesh density was selected 
through analyses in order to guarantee high accuracy of computations and also the most optimum 
simulation time. Simulation conditions directly corresponded to the experiment. Rubber coupon 
with applied initial-boundary conditions is presented in Figure 1. In Figure 2 exemplary force-
displacement curves for Mooney-Rivlin model simulation and experimental tests are presented. 

 
Fig. 1 Rubber coupon with applied initial-boundary conditions and exemplary force-displacement 

curves comparison for Mooney-Rivlin model and experimental tests 

4. Conclusions 

From the carried out analyses the material characteristics include force versus displacement 
were obtained for all  constitutive material models. Consequently, results were compared with each 
other and validated with experimental data. It was shown that with accurate material characteristics 
and proper material model it is possible to assess mechanical behaviour of rubber (rubber-like) 
materials with good eff iciency and accuracy with different material laws taking into consideration.  
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1. Introduction

Themain objectiveof thispaper is to improvestabilit y conditions, uniquenessandconvergence
of numerical analysis of metal forming processes with contact constraints enforced by the penalty
method. A commonly known drawback of thisapproach is the choiceof penalty factor values. When
assumed toolow, they result in inaccurate fulfillment of the constraintswhilewhen assumed too high,
they lead to bad conditioning of the equations system which affects stabilit y and uniquenessof the
solution. The proposed modification of the penalty algorithm consists in adaptive estimation of the
penalty factor valuesfor theparticular system of finite element equationsandfor the assumed allowed
inaccuracy in fulfillment of the contact constraints. The algorithm is tested onrealistic examples of
sheet metal forming. The finite element code based on flow approach formulation [1, 2] (for rigid-
plastic and rigid-viscoplastic material model) has been used.

2. Main idea of penalty algor ithm modification

The main ideais to estimate the penalty factors, adjusting their values to current stiffnessand
load conditionsof themodel and to an assumed accuracy of contact modelli ng. It isassumed that the
penalty factorsǫk differ at different locations(for different discretenode-to-surface contact constraints
k = 1, . . . , M) and at different timestepsor even equili brium iterations.
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Figure 1. Elastic spring with contact constraint

The idea is first explained on a 1D exam-
ple. The model shown in figure 1 is considered;
k denotes stiffnessof the spring, q is the excit-
ing force, û is the assumed valueof displacement
(restrictionresultingfrom the contact constraint),
ǫ is the penalty factor and δ is the allowed in-
accuracy of contact modelli ng (limit penetration
depth). It isclear that, in order to preservethede-
sired accuracy of thesolution, the penalty ǫ must
at least equal [k(û − δ) − q] /δ.

Let usnow passto thegeneral 3D case, i.e.
consider a FE-discretized structure, with a non-
linear systemof equations solved bytheNewton–
Raphson scheme for the unknown displacement
vector u. Our goal isnow to estimate thepenalty
factor values ǫk as large enoughto preserve the desired accuracy of contact constraints but not larger
so that the conditioning of thesystem matrix isnot significantly worsened.

The allowed inaccuracy of contact modeling (penetration) is now a vector δ = {δk}. Thus,
in the worst case we allow Du − û = δ, where D is a geometric matrix of directional cosines
of rigid surfaces at the contact points. Substituting this to the general contact-penalized system of
equations [4]

(

K + DT
ǫD

)

u′ = q′ + DT
ǫû′, ǫ = diag(ǫk),(1)
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Figure 2. Benchmark test of deep drawing: initial geometry and deformed shapewith contact penetration map.

(whereu′ is thesolutioncorrector at the current iterationandq′ thevector of residual forces), one can
derive after aseriesof transformationsthe formulaǫδ = D(q′ −Ku′). Recalli ng that ǫ isadiagonal
matrix, we rewrite it the index notationas

ǫk =
Dki(q

′

i − Kiju
′

j)

δk

(nosummation over k).(2)

Equation(2) istherecipefor the adaptivepenalty factor values. Unfortunately, thedisplacement
correctors u′

j on the right hand side are not known the moment and we need to replacethem by their
available approximate. Since in the convergent iteration scheme the subsequent corrections tend to
zero, it i s proposed to set u′

j = 0, except for the nodes where active contact constraints apply –
there u′

j are set to simple orthogonal projection vectors of the current node position onto the contact
surface. Thus, the formula (2) does actually yield approximate rather than exact values of desired
penalty factors, which does not guaranteefulfillment of the imposed accuracy condition of contact
modelli ng, but appears to besufficient to keep the inaccuracy at least at theorder of magnitudeof the
allowed limits, Du− û ∼ δ.

3. Numerical example: Deep drawing of a plastic sheet

Thenumerical example is a deep drawing of asheet. Thedrawing parameters and geometry of
toolsare taken from thebenchmark proposed byWoo in [3]. Thegeometry of thesheet and toolsare
presented in figure2. The assumed inaccuracy of contact modelli ngat all nodes is δ = 0.001 mm.

Figure 2 (right) presents the contact modeling inaccuracy, i.e. the penetration depth of sheet
nodes into rigid tools. Thepicturepresents theresults for thestep for which theworst inaccuracy was
detected. As it can beseen, itsmagnitude iskept at the level of 10−3 mm.
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1. Introduction

The paper deals with stationary flow of nonwetting liquid (mercury) througha unsaturated porous
layer. This type of one-dimensional flows, due to its geometric simplicity, are often the subject of
experimental studies, devoted to determination of the flow characteristics of porous material. Theo-
retical considerations are based on the new macroscopic description of capill ary transport of liquid
and gas in porousmaterials formulated by thefirst author of thispaper within conceptsof multiphase
continuum mechanics. In this theory it is assumed that gas and liquid filli ng rigid porous material
form macroscopic continuum composed of three constituents: gas, mobile liquid andcapill ary liquid.
Thedivision of liquid into two continuais justified both from kinematical andenergetic point of view.
The capill ary liquid is contained in the thin layer covering the internal surfaceof pores. This liquid
gather thewhole capill ary energy of theliquid andis immoveable. It can, however, exchangethemass
with the mobile liquid in the vicinity of meniscus surfaces. The massexchange appears only during
their motion in the pore space and is described by the separate velocity field. This makes it possible
to model the mechanism of meniscus motion in the pore space. The mobile liquid is located in the
internal areaof liquid surrounded by its internal contact surfacewith the skeleton and surfaces of
meniscus. Each constituent is characterized by the massdensities and their distributions are defined
by parameters of saturation.
Description of the flow of nonwetting liquid through unsaturated porous material is a special case of
this theory and is given by the system of threenonlinear coupled equations for spatial distribution of
liquid saturationand pressure and for velocity of liquid flow through porous layer.

2. The formulation of the problem

Basic assumptions
We consider a system composed of porous layer of thicknessL surrounded by nonwetting incom-
pressible liquid (figure 1). Due to strong influenceof liquid distribution in the layer on its flow, the
analysis is performed in two steps. First, we consider quasistatic processof liquid intrusion into ini-
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Figure 1. Distribution of pressure and liquid saturation in the layer during its intrusion (a) and flow through
the layer (b).
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tially empty layer by uniform increasing of liquid pressure on both side of the layer. This produce
initial distribution of liquid (figure 1a). Next, the pressure is increased only on the left hand side of
the layer resulting in non-uniform pressure distribution inside the layer and stationary flow of liquid.
As a consequence, liquid distribution in the layer isalso modified (figure1b).

Basic equations
One dimensional problem of nonwetting liquid flow through porous layer is described by the follow-
ing system of coupled nonlinear differential equations

(1)
∂ŝ

∂p̄
− 2

C̄oC̄1

ŝ

∂2ŝ

∂x̄∂p̄
− C̄o

∂2ŝ

∂x̄2
= 0

(2) ŝ(x̄, p̄(x̄))
dp̄

dx̄
= −C̄1

(3)
vf

m

vf
m0

=
kre

m

ŝ(x̄, p̄(x̄))

where x̄ = x/L is dimensionless spatial coordinate, p̄ = p/p0 is dimensionlesspressure, ŝ(x̄, p̄(x̄))
and vf

m stand for liquid saturation and velocity of mobile liquid, respectively. Whereas, vf
m0

is the
velocity of mobile liquid flow throughsaturated porous layer and C̄0 is thedimensionlesscoefficient
of diffusivetransport of meniscus in unsaturated porousmaterial. The constant coefficient C̄1 isgiven
by relation

(4) C̄1 = kre
m (p̄(0) − p̄(1))

wherekre
m is the relativepermeabilit y coefficient. Its value is determined by liquid saturation

(5)
1

kre
m

=

1∫

0

dx̄

ŝ(x̄, p̄(x̄))

Equation (1) for C̄1 (p̄(0) = p̄(1)) describes quasistatic processof nonwetting liquid intrusion into
porous layer.

Boundary conditions
Boundary conditions for stationary flow of nonwettingfluid through porous layer are as follows

(6) p̄(0) = p1/p0, p(1) = 1, ŝ(0) = s(p̄(0)), ŝ(1) = s(p̄(1)).

where s(p̄) is known function of pressure directly related with the pore diameter distribution onthe
surfaceof the layer.

3. Numerical implementation

Thesystem of equations (1)-(3) has been solved by Newtonmethod. Due to their strong nonlinearity
the solution is very sensitive to assumed perturbations in differential scheme, especially in the pres-
sure domain. In spite of the geometrical simplicity of the problem its solution requires quite large
computational effort.
Numerical solution of equations (1)-(3) allows analysis of influence of pressure on distribution of
liquid saturation in the quasistatic process as well as analysis of dependence of liquid saturation,
pressure, velocity of liquid flow throughthe layer andrelativepermeabilit y parameter on pressuresat
both sides of the layer in thestationery processes.
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1. In tr oduction 

Materials with complex mechanical properties (composites, functionall y gradient materials) are 
widely distributed in the industry (measurment technology, precision machinery industry, aircraft 
industry). Therefore, when producting the structural elements made of these materials and during the 
qualit y control of their manufacturing, the determination of the laws of variation in their properties is 
very important and urgent problem. Traditional experimental methods for evaluating the properties of 
such materials in the framework of the homogeneity hypothesis are rather crude, and, therefore, the 
development of alternative non-destructive methods is necessary for the identification of 
heterogeneous characteristics, which allows to clarify the structure of the heterogeneity. 

The proposed method of investigation is based on the apparatus of inverse coeff icient problems 
in mechanics of deformable solids, and allows to reconstruct the unknown functions using the data of 
acoustic sensing, measured at some points of the object under study [1]. In this paper the problem is 
considered for determining three heterogeneous characteristics of the rod: the Young modulus )(xE , 
shear modulus )(xG  and density )(xU , in the combined analysis of longitudinal, bending and 
torsional oscil lations. 

2. Statement of the problem and construction of the solving operator equations 

Lets consider the problem for reconstruction of three mechanical characteristics 
)(xE , )(xG , )(xU  for an inhomogeneous isotropic elastic rod of length l , for which )(xF , 

)(xJ , )(xJ p  are the cross-section area, axial and polar moments, respectively. 

To solve this problem, we implement the various modes of oscillation: longitudinal, bending 
and torsional. It is assumed that the information about the amplitude-frequency characteristics at the 
end of a cantilever clamped rod is known: )(),( 1 ZZ flu  , ],[ 21 ZZZ� , for the longitudinal 

oscillation; )(),( 2 ZZ flw  , ],[ 43 ZZZ� , for the bending oscillation; 

)(),( 3 ZZ flv  , ],[ 65 ZZZ� , for the torsional oscillation. 

In the present paper, the following scheme is proposed to determine the unknown functions: at 
the first stage, on the basis of combined analysis of longitudinal and bending oscillations, we 
determined the functions that characterize the laws of variation for the Young modulus )(xE  and 
density )(xU ; at the second stage, from analysis of torsional oscillations for a known density function, 
we determined the function characterizing the law of variation for the shear modulus )(xG . 
On the basis of generalized reciprocity relation [2] the operator equations are obtained, which relate 
the unknown functions and functions measured in the analysis of wave processes. 
In the case of longitudinal oscillations, the operator equation has the form (1): 
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In the case of bending and torsional oscillations, the operator equations have the form (2), (3) 
respectively: 



Session: Computational Aspects of Solid Mechanics 47

 �¸̧
¹

·
¨̈
©

§
³³ �

�

dxxxFxwdxxExJ
dx

xwd n
l

nn
l n

)()()),(()()(
),( )(2

0

)1(2)(

2

0
2

)1(2

UZZ
Z

 

                     

(2)                )),()(( )1(
2 ZZ lwfP n��� , ],[ 43 ZZZ�         

                   

(3)              )),()(()()(
),( )1(

3
)(

0

2)1(

ZZ
Z

lvfMdxxGxJ
dx

xdv nn
l

p

n
�

�

� ¸̧
¹

·
¨̈
©

§
³ , ],[ 65 ZZZ�                         

3. The numerical realization 

Note that each step of the iterative process requires the solution of the direct problem with the 
revised properties. Direct problems were solved by reduction to Fredholm integral equations of the 
second kind as in [3]. Thus,  on the basis of the apparatus of Fredholm integral equations of the first 
and second kind have been constructed iterative processes for the identification of unknown 
functions that are allowed to carry out the cleavage of the initial inverse problem into a sequence 
of problems of two types -  solution of the direct problem with variable coeff icients and the definiti on 
of the amendments on the basis of a standard solution of ill -posed problem - treatment of Fredholm 
integral equation ofthe fi rst kind with smooth kernel. 

Several computational experiments in the problems of identifying  the mechanical 
characteristics of the rod for different types of inhomogeneities were carried out. The experimental 
results showed that the proposed method can effectively restore smooth inhomogeneity laws: 
polynomial, trigonometric, functions with a large gradient (for the reconstruction with an accuracy of 
8% is sufficient 5 - 7 iterations). Piecewise-constant heterogeneities restored much worse. The result 
of the restoration of these functions on the basis of the proposed method are smooth functions, similar 
to the original in the mean-square. 

This work was supported by the President of Russian Federation (grant MK-6213.2012.1) 
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1. Introduction 

MEMS actuators (microactuators) produce movement and force, transforming (in most cases) 
electrical energy into mechanical energy. There are different types of microactuators, li ke: thermal, 
electrostatic, magnetic, piezoelectric and SMA (Shape Memory Alloys) ones. They use different 
types of physical phenomena to produce mechanical energy. In the thermal actuators movement is 
generated by means of high electrical resistivity of material and specific geometry. Electrostatic or 
electromagnetic actuators use electrostatic or electromagnetic force between movable and stationary 
parts (comb drive actuators). Piezoelectric microactuators use piezoelectric phenomenon and can be 
fabricated as a bimorph or expansion types. Shape optimization is an important phase in MEMS 
actuators designing. Majority of papers dedicated to the shape optimization of the microactuators 
consider only one criterion. If  more than one criterion is considered, the optimization is performed 
by choosing one optimization criterion with other treated as restrictions. Another common approach 
is scalarization of the criterions by using weighting method. Such attitudes can be treated as 
multiobjective optimization but they are rather inadequate and ineff icient. In multiobjective 
optimization based on Pareto concept several objectives (or cost functions) are minimized or 
maximized simultaneously. Obviously, in these problems there is no single solution that is the best 
with respect to all  objectives. The designer has to chose one solution from a set of solutions, which 
are called optimal in the sense of Pareto.  

Different models of electrostatic and thermal microatuators are optimized in the paper. The 
objectives can be created on the basis of different quantities derived from particular coupled-field 
analyses. Finite Element Method (FEM) [3] is used to solve electrostatic-structural and electro-
thermo-mechanical boundary-value problems. Objectives function value calculated on the basis of 
numerical models of microactuators are usuall y multimodal. Analytical optimization methods are 
widely applied and they have good mathematical foundations, but for multimodal functions they 
usuall y stuck in local optima. Application of evolutionary algorithms (EAs) allows to avoid these 
diff iculties. Moreover, EAs are ideal candidates for finding the Pareto optimal solutions because 
they work on the population of potential solutions in each generation. 

2. Multiobjective optimization problem 

Among many different types of multiobjective evolutionary algorithms, Strength Pareto 
Evolutionary Algorithm and Non-Dominated Sorting Genetic Algorithm are the most popular 
multiobjective optimization tools. Consecutive versions of such algorithms: SPEA2 and 
NSGAII [1] have many practical applications in different engineering disciplines. An own 
implementation of evolutionary multiobjective algorithm is used in the paper.  Some specific 
methods implemented in NSGAII are applied in proposed method. Proposed algorithm has been 
tested on several benchmark and engineering problems. The results obtained by means of our 
method in most cases are better in comparison with the results obtained using NSGAII [2]. Finite 
element method is used to simulate direct problems numericall y. MSC.Mentat/Marc and Ansys 
Multiphysics software packages are adapted to create the optimization system. Suitable interfaces 
between optimization algorithm and the FEM software are created. 
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3. Example of multi objective shape optimization 

The model of microelectrothermal actuator is considered (Fig. 1a). The microactuator is 
fabricated from polycrystalli ne sili con. The deflection of the microactuator occurs if  the electrical 
potential difference is applied across two electrical pads (EP1, EP2). Caused by material properties 
- high electrical resistivity and different thermal expansion coeffi cient between thin and wide arms. 
The device is subjected to the electrical, thermal and mechanical boundary conditions. The length of 
the actuator is equal to 260 microns, while electrical pads are 20x20 microns wide. The 
multiobjective problem concerns determining the specifi ed dimensions of the actuator shape, which 
minimize:  (i) volume of the microactuator, (ii)  maximal value of equivalent stress and maximize 
(iii)  vertical deflection of the microactuator. Six design variables (Z1-Z6) are assumed (Fig.1a). 
Fig.1b presents a set of Pareto optimal solutions. The design variables for extreme solutions are as 
follows: Point A (Z1=1.0 Z2=1.048 Z3=1.0 Z4=12.0 Z5=100.0 Z6=2.0), Point B (Z1=1.24 Z2=1.91 
Z3=1.01 Z4=14.3 Z5=98.46 Z6=5.14), Point C (Z1=1.0 Z2=1.0 Z3=1.081 Z4=18.0 Z5=30.0 
Z6=2.0). 

a)  
 

 

b)  

Fig.1. a) Geometry and parametrization of the thermal microactuator, b) Set of Pareto-optimal solutions 

4. Final remarks 

An effective intelli gent technique based on the multiobjective evolutionary algorithm is used 
for shape optimization of microactuators. Positive results of multiobjective optimization are 
obtained for different type of microactuators. Coupled electrostatic-structural and electro-thermo-
mechanical FEM analysis are performed to calculate objective functions for each individual in each 
generation. Numerical computations for such multiphysics problems using FEM is usuall y time 
consuming, especiall y for more complicated models. 
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1. In tr oduction 

More and more high-dimensionality problems of mechanics of solids and structures become 
solvable on personal desktop computers without involving expensive workstations, clusters, 
networking etc. This type of computers requires a specific development of FEA software because of 
a restricted capacity of the core memory and a narrow bandwidth of the memory system. 

The finite element method which has become most popular among numerical methods for the 
solution of problems of the structural and solid mechanics, leads to the linear algebraic equation sets 
with the sparse symmetric matrices. There are classes of problems that are preferable to solve by 
iterative methods instead of direct ones, because the duration of solution for iterative methods 
depends on dimension of problem almost linearly. Usuall y it is the design models of structures 
having rather short and wide structure of levels of an nodal adjacency graph. 

The algorithm of matrix multiplication is possible to be essentially accelerated on the base of 
multithreading parallelization for shared memory multicore computers due to efficient usage of a 
cache-memory and registers of processors. It allows us to unload the system of memory possessing 
narrow bandwidth; therefore this algorithm demonstrates a good speedup while the processors 
number increases. The factoring of the sparse matrix is reduced to repeated application of algorithm 
of matrix multiplication for dense submatrices. Therefore it is possible to achieve a good speedup 
for direct methods at a stage of numerical factoring [1]. 

For problems of structural mechanics the preconditioned conjugate gradient method has 
appeared the most effective. In this work we apply the sparse incomplete Cholesky factorization 
method ± a combination of incomplete Cholesky factorization by value approach with technique of 
sparse matrix. The main stages of this method are the sparse incomplete Cholesky factoring and 
iteration process. We will  discuss the both: the parallelization of sparse incomplete factorization 
procedure and the stage of iterative one. 

2. Sparse incomplete Cholesky factor ization procedure 

The sparse technique allows us essentially improve the property of preconditioning to 
accelerate of convergence. The multiple minimum degrees algorithm is applied to reduce the fill -
ins, arising during incomplete factoring. In average, such a technique reduces the number of 
rejections comparing with conventional (non-sparse) method and allows us to approach the property 
of incomplete factor H to complete L without essentiall y increasing the size of incomplete factor H. 

The looking-left column-by-column algorithm is applied: 
1. do j = 1, N 
2.  Copy nonzero elements of column j of source matrix in dense vector sj. 
3.   Parallel update column j by columns, are located at left: ¦

�

� 
][

,
jListk

kkjjj a sss   

4.   Factoring of column j. 
5.  Analyze of elements sj : � �jjiiij aaaif \�2  ± reject aij and correct the diagonal entries 

ij
ii

jj
jjij

jj

ii
ii a

a

a
aa

a

a
a   , , otherwise ± put aij to nonzero structure of column j. 
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6. end do 

Here N�ë�/LVW[j] means that the subscript k accepts only those values, for which ajk �����9HFWRUV�
sj, sk contains the matrix elements, located below row i = j. Threshold value % is taken so small how 
much it the amount of RAM and performance of the computer allow. The stage 3 requires almost 
95% ± 97% of computing time during factoring; therefore this part of algorithm should be 
parallelized first of all . We avoid splitting of a matrix into blocks as such procedure inevitably leads 
to increase in the size of incomplete factor H. It in turn increases requirements to amount of RAM 
and slows down the forward-back substitutions repeatedly applied in the course of iterations. 

3. Iterative procedure 

We can't produce the parallel computing on different steps of iterations because for obtaining 
of solution on a step k+1 it is necessary to know the solution on a step k. The parallelization only 
within each iterative step does not lead to considerable acceleration on multi-core computers. The 
matrix - vector multiplication and forward-back substitutions respectively incomplete factor H are 
the main time consuming operations. Unlike matrix multiplication these procedures are not to be 
accelerated considerably due to parallelization on computers of the specified architecture having a 
weak bandwidth of memory system [2]. Therefore we use parallel execution of iterations for 
different right parts, considering the fact that in practical problems of structural mechanics the 
structures are subjected by package of loads ± dead load, exploitation loads, wind load, snow loads 
and so on. The number of load cases usually is about 6 ± 60. 

4. Numer ical results 

The design model of a real multistory building from collection of SCAD Soft 
(www.scadsoft.com) is considered. Model comprises 2 002 848 equations and 7 right-hand sides. 
The computer with four-core AMD Phenom�� ,,� [�� ���� ����*+] processor, RAM DDR3 1066 
MT/s, 16 GB core memory is taken. The resignation parameter % = 10-13. 

 

Nos of threads Incomplete 
factoring 

Stage of 
iterations 

Total time 

1 1 000 345 1 345 

2 578 213 791 

3 465 172 637 

4 421 144 565 

Table 1. Duration of several stages of iterative solution, s. 
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1. Introduction

3D beams with thin walled or compact section are widely used in engineering practice and the

improvement of both linear and nonlinear models suitable to perform FEM analyses still represents

an important task for researchers.

Although in the past notable contributions have appeared [1, 2], in recent literature interesting works

[3, 4, 5, 6, 7] have presented beam theories with non-uniform warping and shear deformations for

non-symmetric open/closed cross-sections.

This work deals with the theoretical generalization of the Saint-Venànt linear solution (SV) to the

case of nonuniform warping and its FEM formulation for the numerical analysis. The model is based

on independent descriptions of both the 3D kinematical and stress parts. The kinematical description

is based on standard assumptions that consider a rigid section motion plus an out-of-plane warping,

derived by the SV solution, now generalized to allow the three warping functions corresponding to

shear and torsion to vary along the axis with three independent descriptors, while the cross-sections

maintain their shape. The warping functions are calculated numerically, as FEM solution of three

Neumann boundary-value problems as in classical SV solution (see [8]). The 3D stresses are in-

dependently described by summing to the SV stress shape some further terms due to the variable

warping.

The field so obtained are entered in the Hellinger-Reissner variational principle to obtain the model

in terms of sections resultants.

Two different approaches will be developed and compared: the first one uses a Benscoter-like [9]

expression for the secondary shear stresses derived from the generalized kinematic; the second one

evaluates the shear stresses by the equilibrium equation in the axial direction. The second approach

requires the solution of a new set of PDEs problems on the cross section domain, whose boundary

conditions are obtained by imposing the zeroing of the traction vector on the free cylindrical surface,

as no body forces or loads on the lateral boundary are considered. The numerical solution of the in-

volved functions makes the formulation particularly general and easy to be used in the case of generic

cross-section where the centroid and the shear center are not necessarily coincident. Once all the

involved warping function are known, an automatic evaluation of the compliance matrixes is in fact

possible.

The model could be exploited also as the starting point for geometrically nonlinear formulations, due

to the possibility to filter the rigid body motion by means of standard Corotational descriptions (see

[10] for example) or at the continuum level. A first important attempt in this direction is represented

by the Implicit Cotational Method proposed in [11]. The resulting nonlinear models maintain all the

information of their linear counterpart and can be accurate up to the order required. This aspect is very

significant when performing Koiter-like asymptotic analyses, as a second order kinematical accuracy

is inadequate.

A series of numerical tests will show the accuracy and the effectiveness of the proposed model and

its discrete implementation.
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1. Introduction

The chloride corrosion is one of the most important destructive factors of durability of concrete

structures. During the process, chlorides penetrate the concrete cover and gather around passive

reinforcement bars. As time passes by, the chloride concentration in concrete increases until it reaches

a chloride threshold value, estimated as 0.4% of the cement mass. At this moment the passive layer

on the steel bar surface becomes decomposed and the rebar starts corroding. The rust has a smaller

density than steel, which means that the volume occupied by rust is much larger than the volume of

steel consumed in the process, thus a volumetric expansion occurs [1]. This generates an internal

pressure acting on the concrete surrounding the reinforcement. As a result tensile stresses occur in

the concrete cover, which leads to cracking, splitting, spalling and general failure of the element.

2. Corrosion interface model

The proposed model of corrosion interface in RC cross-section is focused on the analysis of

cracking of the concrete. The constitutive model for concrete behavior is the plasticity-based damage

model proposed in [2]. The model uses concepts of isotropic damaged elasticity in combination with

multi-surface plasticity to represent the inelastic behavior of concrete. It assumes that the two main

failure mechanisms are tensile cracking and compressive crushing of the material. The evolution of

failure is controlled by tensile and compressive equivalent plastic strains. Under uniaxial tension, the

stress-strain response follows a linear elastic relationship until a failure stress is reached. Beyond the

failure stress the formation of micro-cracks is represented macroscopically with a softening stress-

strain response. Under uniaxial compression the response is linear until the value of initial yield

strength is reached. In the plastic regime the response is typically characterized by stress hardening

followed by strain softening beyond the ultimate stress. Steel is modelled as an elastic-plastic material

without hardening. Rust is introduced as a layer of elastic material.

These three material models are used to build a numerical representation of corrosion interface.

The two-dimensional model is created using FE package Abaqus. Concrete and steel are modelled

as a solid using 8-node continuum elements (CPS8R). Rust is modelled as an interface, using 4-node

cohesive elements (COH2D4). The constitutive response of the cohesive layer can be defined using

a traction-separation description or a continuum approach. Both types are considered in the model.

For comparison, rust can also be modelled as another continuous material. The three materials are

connected using tie constraint.

3. Tests and application

Firstly, numerical tests are performed on a sample with dimensions 200mm x 300mm. The

model is a composition of three materials tied and loaded by unit uniaxial tension. The interface

response is described in terms of traction-separation or using continuum approach. In the third model

rust is treated as a solid material. On the basis of the results, achieved from the test, for further

calculations only cohesive elements with traction-separation response are implemented.

Damage due to corrosion product expansion is simulated for an RC cross-section with the di-

mensions of 350mm x 600mm. The cross-section is reinforced with four 25mm-diameter bars. The

bars spacing is 75mm. The C25/30 concrete is assumed, the concrete cover is 50mm, and the rust
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1. Abstract

In this work the thermomechanical loading through dielectric heating of a cylindrical sample

made of a brittle material is investigated. Such heating occurs due to irradiation by microwaves in a

cavity or by a beam [1]. The suitable modelling of the dielectric heating is of crucial importance in

the analysis. In literature there can be found two approaches to model microwave heating in dielectric

media. The first one utilise Maxwell’s equations in dielectric media [2], the second one is known as

Lambert-Beer’s law [3]. In contrast to the Maxwell’s equations approach, with Lambert-Beer’s law it

is not necessary to solve the propagation of electromagnetic waves inside the medium and the heating

is modelled via a volumetric heat source. The expression for this source or body flux can be derived

from Maxwell’s equation [4, 5]. In this work the time-dependent temperature field is obtained via

the Green’s function approach and compared with numerical results from finite element calculations.

The following analysis for the time-dependent stress-strain field is performed in the same manner,

and again analytical results are compared with numerical calculations. With the information how

the stress-field varies with time, it is possible to perform a fracture-mechanics analysis for several

crack configurations. Due to the fact that the material shows a brittle behaviour it is admissible to use

linear-elastic fracture mechanics and the K-factor concept [6]. As a result stress intensity factors are

obtained and can be compared with critical values from literature. Additionally a possible procedure

for a crack propagation and life-time calculation will be given in the outlook.
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1. Introduction 

Micro-domain subjected to the external heating is considered. Mathematical description of the 
process discussed bases on the dual phase lag equation in which  the relaxation time and the 
thermalization one appear. The DPL equation contains a second order time derivative and higher order 
mixed derivative in both time and space. This equation is supplemented by the adequate boundary and 
initial conditions. To solve the problem the general boundary element method is adapted 

2. Mathematical model 

Heat transfer processes proceeding in a rapidly heated micro-domains can be described, 
among others, by the dual phase lag equation [1, 2]  (2D problem is considered) 

(1)  
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where C is the volumetric specific heat,  � is the thermal conductivity, �q is the relaxation time, �T is 
the thermalization time, T is the temperature, (x, y) are the spatial co-ordinates and t is the time. 
This equation is supplemented by the boundary conditions 
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where Tb (x, y, t) is a known boundary temperature, qb (x, y, t) is a known boundary heat flux, n is the 
normal outward vector, ∂(⋅)/∂n is the normal derivative and Tp is an initial temperature. 

3. General boundary element method 

It should be pointed out that for �q = �T  = 0 the equation (1) reduces to the well  known Fourier 
one. To solve the Fourier equation by means of the boundary element method the several variants 
basing on a time marching technique have been applied, for example the 1st scheme of the BEM, the 
BEM using discretization in time and the dual reciprocity BEM. In this work, the general boundary 
element method (GBEM) for hyperbolic heat conduction equation proposed by Liao [3] is adapted in 
order to solve the dual-phase lag equation. 
Let � = 1/�t and T f=T (x, y, f �t), where �t is the time step. Then, for time t f = f �t (f  ≥ 2) the following 
approximate form of equation (1) can be taken into account 

(4)  1 2 1 2 2 2 2 1( ) ( 2 ) ( )f f f f f f f f
q TT T T T T a T a T T− − − −β − + τ β − + = ∇ + τ β ∇ − ∇  
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where a = �/C. From initial conditions (3) results that T 0 =T (x, y, 0) = Tp and T 1 =T (x, y, �t) = Tp. It 
should be pointed out that when the equation (4) is solved at the f-th time  step t f = f �t then the 
temperature distributions T f-1 at time t f-1 and T f-2 at time t f-2 are known. 
At first, a family of partial differential equations for �(x, y; p) is constructed [3] 

(5)  (1 )L[ ( , ; ) ( , )] A[ ( , ; )]p x y p U x y p x y p− Φ − = − Φ  

where p∈[0, 1] is an parameter, U (x, y) is an initial approximation of  temperature distribution T f (for 
example U(x, y) = T f-1), L is an 2D linear operator whose fundamental solution is known and A is an 
non-linear operator.  The form of operators L and A results from the equation (4) [3]. The equation (5) 
should be supplemented by adequate boundary conditions resulting from conditions (2). 
If  p = 0 then � (x, y; p) corresponds to the initial approximation U (x, y), while if p=1 then �(x, y; p) 
corresponds to the unknown temperature T f =T  (x, y, t f ). So, the equations (5) form a family of 
equations in parameter p∈[0, 1] and the process of continuous change of the parameter p from 0 to 1 is 
the process of continuous variation of solution �(x, y; p) from U (x, y) to T f =T  (x, y, t f ). 
Function �(x, y; p) is expanded into a Taylor series about value p =0 taking into account the first 
derivative and under the assumption that U (x, y)=T f −1 one has 

(6)  1 [1] ( , )f fT T U x y−= +  

where U[1](x, y) = (∂Φ(x, y; p)/ ∂p)|p=0.  
Taking into account the form of operators L and A the equation ∇2U[1] – BU[1] +R(U) = 0 should be 
solved using the traditional BEM for steady-state problem.  
As an example, the domain of dimensions 100nm×100nm made of gold is considered. At the upper 
surface the heat flux described by Gaussian function is assumed, at all  other boundaries the zero heat 
flux is accepted. Initial temperature equals to 300K.  Figure 1 shows the temperature  history at the two 
internal points close to the central part of upper surface.  

 

Figure 1. Temperature history at the two internal points. 
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1. Introduction 

Metal foams (Fig. 1) are a new, as yet imperfectly characterized, class of materials with low 
densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer 
potential for lightweight structures, for energy absorption, and for thermal management; and some 
of them, at least, are cheap.  

The paper deals with the experimental and numerical studies of the open-cell  aluminum foam 
microstructural behavior. The aim of the research was to describe the main mechanisms that appear 
in the foam structure during the compression. The first step of the research was the compression test 
of the samples in the tomography testing stage that was coupled with sample X-ray scanning to 
describe the deformations in the researched material for the FE model verification. The next step of 
the study was the development and the analyses of the numerical model of tested undeformed 
sample in accordance to computed tomography results. Both results were compared. On the base of 
good correspondence the main mechanisms in the foam structure were described. 

2. Computed tomography description and research results 

SkyScan 1174 (Fig. 2) compact micro-CT was utili zed to carry out the compression tests for 
samples made of an open cell  ERG Aerospace aluminum foam of 10 PPI1. The foam relative 
density was 9%. The conducted test was performed to compress the sample by 40% of its height. 
The compression was done in the following stages of 1 mm and after each stage the compressed 
sample tomography was carried out. The load velocity was 2,5 mm/min. The examples of 
deformations and strain – stress curves are presented in Fig. 3.  

 
 

Fig. 1. Open cell  aluminum foam Fig. 2. SkyScan 1174 compact micro-CT 

 
Fig. 3. CT compression test results – deformations (undeformed and compressed samples) and 

stress-strain curve 
                                                           
1 PPI –  pores per inch – the number of open pores linearly arranged along the distance of one inch�
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3. Finite element model, analysis and results 

Foamed materials numerical models are often developed on the base of the real structure image (2D 
photograph or 3D scan) [1,2]. Idealized models suitable for investigations to determine the 
influence of particular geometrical or material parameters onto global properties of a foam are also 
used (i.e. Kelvin’s polyhedron [3], Weaire-Phelan structure [3] or Voronoi 3D tessellation [4]).  

The model was built  with the use of a unique computer code created to transform the scan point 
cloud into FE raster model based on solid 8-node elements (Fig. 4). The numerical compression test 
was carried out with the use of LS Dyna computer code. The boundary conditions were applied as 
in the experiment. The elastic-plastic material model with isotropic hardening was applied to 
describe the material properties for aluminium (Young modulus E=71GPa, Poisson ratio ν=0,33, 
yield stress Re=318MPa). The comparison of numerical and experimental tests was carried out for 
deformations and stress-strain curve (Fig. 5) and showed good accordance. The differences result 
from material model and properties approximations. 

 
  

Fig. 4. Numerical model 
development 

Fig. 5. Comparison of 
experimental and FE results 

Fig. 6. Stress distribution in 
compressed FE model 

Due to the high correspondence between numerical and experimental tests, the main mechanisms 
appearing in the foam microstructure were assessed on the base of the von Mises stress distributions 
(Fig. 6). The main mechanism of the foam damage is the plastic joints development in the 
connection areas between foam beams as well  as in the beams. 

4. Discussion and conclusions 

The development process of the real foam structure numerical model on the base of the computed 
tomography was presented. The experimental and numerical study of the 10PPI foam samples was 
presented. The results of strain – stress behavior and deformations were compared and showed good 
compatibilit y. The stress distributions were studied in order to characterize the main mechanisms in 
the structure. The most important conclusion is that the foam structures can be considered as the 
complex beams constructions where the local instabiliti es determine energy absorbing capabiliti es.  
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1. In tr oduction 

The problems connected with the numerical modeling of microscale heat transfer are here 
discussed. Generally speaking, the differences between the macroscopic heat conduction equation 
basing on the Fourier law and the models describing the same process in microdomains appear, first of 
all , in the case of extremely short duration, extreme temperature gradients and very small  dimensions 
of domain considered [1].  
From the mathematical point of view, nowadays there exist different models describing the mechanism 
of process discussed. In this place the microscopic two-step parabolic model can be mentioned [2]. 
The two-temperature parabolic model involves two energy equations determining the thermal 
processes in the electron gas and the metal lattice. The other governing equation can be obtained on the 
basis of classical Fourier-Kirchhoff  equation in which the vector of heat flux q is defined in a special 
way (both the relaxation and thermalization times are taken into account).  The relaxation time is the 
mean time for electrons to change their energy states, while the thermalization time is the mean time 
required for electrons and lattice to reach equili brium. This approach is called the dual phase lag model 
(DPLM). 

In the paper the thermal processes proceeding in domain of thin metal film subjected to a laser 
pulse are considered. The numerical algorithms simulating the course of the process are constructed 
using the FDM  in  version being the generalization of variant discussed in [3]. Both  two-temperature 
model and DPLM one are taken into account and the comparison of solutions obtained constitutes the 
main goal of research. 

2. Two-temperature parabolic and DPL models 

At first, the microscopic two-step model presented among others in [2] will  be discussed. The 
two-step model involves two energy equations determining the heat exchange in the electron gas and 
the metal lattice. The equations creating the model discussed can be written in the form 
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where Te  = Te (x, t), Tl  = Tl (x, t) are the temperatures of  electrons  and  lattice,  respectively, 
Ce (Te ), Cl (Tl ) are the volumetric specific heats, �e (Te, Tl ����l  (Tl ) are the thermal conductivities, G is 
the coupling factor which characterizes the energy exchange between phonon and electrons, Q is the 
capacity of internal heat sources resulting from the laser action [4]. Taking into account the geometrical 
properties of domain considered, the 1D task constitutes suff iciently good approximation of the real 
heat transfer processes proceeding in the system. Introduction of internal heat source Q allows one to 
assume the no-flux boundary conditions on the upper and lower surfaces of the metal film. The initial 
conditions of the task discussed are also known.  

The other approach resulting from the generalized Fourier law leads to the following equation 
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corresponding to DPL model [4]  
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where T (x, t) = Tl (x, t) is the macroscopic lattice temperature, C  = Cl  + Ce  is the effective volumetric 
VSHFLILF�KHDW�UHVXOWLQJ�IURP�WKH�VHULDO�DVVHPEO\�RI�HOHFWURQV�DQG�SKRQRQV�DQG��   �� e. The boundary 
conditions are the same as previously, the initial one determined the initial temperature and initial 
heating rate. 

3. Example of computations 

 
The thin gold film of thickness L = 100 nm subjected to  a  short-pulse  laser  irradiation [4] is 

considered. Thermophysical parameters are taken from [4]. In Figure 1 the solution of two-
temperature parabolic model is shown, while Figure 2 presents the solution of dual phase lag model. It 
is visible that electron temperature is much higher than lattice temperature. Solution of DPL model is 
between temperature of electrons and lattice in two-temperature model.    

 

  
 
Figure 1: Electrons and lattice temperature   Figure 2: Macroscopic temperature 

     at the irradiated surface     at the irradiated surface 
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1. Motivation

Verification of computer programs is one of the key issues in ensuring quality of numerical sim-

ulations. Verification usually means comparison of the results obtained from computer simulations

with a reference solution. In case of problems governed by a PDE or a set of PDE’s one can obtain

exact reference solution only in the most simple cases. What is more, such solution might be not

enough to fully cover all aspects of the code that is to be verified. A possible remedy to this problem

is to perform code verification using method of manufactured solutions [1]. In this approach one as-

sumes a solution having the desired properties, and then, by filtering the solution through the problem

equations, recovers source terms and boundary conditions that lead to this solution. Automation of

this recovery can make the verification of numerical codes much easier.

2. Program structure

Figure 1 shows the structure and the data flow of our application aimed at providing help in the

construction manufactured solutions for verification of the structural analysis codes. The application
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Figure 1. Structure and data flow for MorphBar application.
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can be used in two modes. In the first mode, the application takes on input a specification of equation

of motion, data for body discretisation in terms of a mesh, and data for material model. On output it

produces a set of files containing input data for a finite element method application. Running the FEM

application on these input files should produce a solution that approximates the assumed equation of

motion. In the second mode, the application takes on input a specification of sampling points and

calculates values of various fields (strains, stresses) that are derived from the assumed equation of

motion and material model. By automating generation of FEM program input files and subsequent

sampling of the fields of interest, the application can substantially help in rigorous, systematic and,

what is more, automated verification of computational codes.

Sampling the displacement field involves direct evaluation of the equations of motion. Calcu-

lation of the deformation gradient tensor field is more difficult as it involves differentiation of the

equations of motion. For some cases the deformation gradient can be calculated from closed analytic

formulas as in the case of ”Axis Deformer” described below. The application makes also provision

for calculating the approximation to the deformation gradient using finite element method techniques

(FEM Deformer), symbolic calculations via external package (Analytic Deformer), and calculation of

the deformation gradient using automatic differentiation (AD Deformer). The hierarchy of deformer

classes is shown in Figure 2.

Axis

Deformer

Deformer

FEM

Deformer

Analytic

Deformer

AD

Deformer

Background 

mesh

Deformer

Scriptable

Deformer

Figure 2. Class hierarchy for Deformers.

3. AxisDeformer module

The ”MorphBar” application was conceived by considering a particular case of deforming a

rectangular cross-section bar. The bar is mapped (morphed) from an undeformed to a deformed con-

figuration by providing the description of the deformed axis via NURBS curve [2] and assuming that

plane cross-sections orthogonal to the undeformed axis remain plane and orthogonal to the deformed

one. In other words we assume the kinematics of the classical Euler–Bernoulli beam theory but with-

out restriction of small deflections. This particular form of the deformation allows us to express the

deformation gradient by the versors of Frenet–Serret frame, torsion and curvature of the axis curve.

The NURBS form of the deformed axis is assumed to facilitate exact analysis of the axis geometry

with the help of the openNURBS C++ library [3].

[1] K. Salari and P. Knupp (2000). Code Verification by the Method of Manufactured Solutions,

SAND2000 - 1444, Sandia National Laboratories.

[2] Les A. Piegl and Wayne Tiller (1997). The NURBS book, Springer.

[3] The openNURBS Toolkit, http://www.opennurbs.org/.
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1. Introduction 

The presented contribution concerns algorithm for detecting contact in numerical simulations 
of sheet metal forming. An amendment to a standard contact searching algorithm is proposed that 
allows to eliminate errors leading to wrong solution results. The considered algorithm is designated 
for the cases of triangular discretization of contact surfaces. Furthermore, numerical cost of the 
presented algorithm is discussed. 

2. The concept of the proposed algorithm 

The standard algorithm for detection of contact between a point and a surface (discretized by 
finite elements) [1,2] assumes that the contact element (also called contact segment) is one of the 
elements sharing the node that is the closest to the point considered. For some finite element meshes 
this assumption may prove false. An example of such a case is shown in figure 1. Here, one can see 
the surface S discretized by triangular elements and the point P located above or below the surface. 
Since the closest node of the surface element mesh to the given point P is the node K, the standard 
procedure will  search for the projection point in one of the elements containing this node, although 
the correct solution is the element Nmin  which is none of them though it actually contains the 
projection point of P onto S.  

 

 
Figure 1. Example discretization of surface. 

In order to determine the contact element correctly, an alternative way is proposed. Unlike the 
standard algorithm, the proposed one consists in finding the closest element for the given point. The 
procedure is as follows. The point is projected orthogonall y onto surfaces of subsequent triangles 
constituting the finite element mesh of the surface. By solving a 3x3 linear system of equations, the 
projection distance D and the barycentric coordinates T1, T2, T3 = 1±T1±T2 of the projection point are 
computed. If 000 321 t�t�t TTT  then the projection belongs to this element and the distance 

between the point and the element is D (figure 2a). Otherwise, the point is projected onto the 
triangle edges, and, depending on the results, D is assigned the value of distance from the point to 
one of the edges or vertices of the triangle (figure 2b). Repeating this procedure for all  the surface 
elements and saving the one with the lowest value of Dmin, the algorithm comes up with the correct 
contact element (or possibly a set of elements if the projection point is located on an edge or 
vertex). 
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       Figure 2. The orthogonal projection.        Figure 3. The interpolated projection 

 The next stage, similarly as in the standard algorithm, is to perform the so-called 
³LQWHUSRODWHG� SURMHFWLRQ´�� L�H�� WKH� SURMHFWLRQ� RI� D� SRLQW� RQWR� D� WULDQJOH� DORQJ� DQ� ³LQWHUSRODWHG�

QRUPDO´� YHFWRU�� 7KLV� LQWHUSRODWHG� YHFWRU� LV� REWDLQHG� RQ� WKH� EDVLV� RI� DYHUDJHG� QRUPDO� YHFWRUV�

computed in each node of the considered element, being the normalized arithmetic average of 
normal vectors in elements sharing the considered vertex. The idea of interpolated projection is 
shown in figure 3.  The purpose of this action is smoothing the results of the projection procedure as 
a function of location of the considered point. The interpolated projection of point is done onto the 
closest contact element (or a number of neighboring elements) indicated in the previous stage of the 
algorithm. 

3. Numerical cost of the algorithm 

 The numerical cost is defined as the total number of dominating operations that must be 
performed to obtain the result of analysis. Here, these are operations of multiplication and division, 
as their execution time is much longer than that of addition and subtraction [3]. Having estimated 
numerical cost for both the proposed and the standard algorithm, we have found that (1) in both the 
cases the numerical cost of algorithm is a linear function of the number of rigid surface elements 
and (2) the numerical cost of the proposed algorithm is significantly higher than that of the standard 
algorithm. On the other hand, however, the proposed algorithm appears in many cases the only 
reliable. 
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1. Introduction

The paper describes the formulation of a hyperelastic-plastic model coupled with gradient dam-

age for materials subjected to large strains. The work addresses also aspects of its finite element

implementation within AceGen/AceFEM environment. The analyzed theory and algorithm are ap-

propriate for simulations of composite and metallic materials failure.

2. Material description

The kinematical framework of the presented model is based on a multiplicative decomposition

of the deformation gradient F in the form: F = F
e
F

p. Free energy function is assumed to be an

isotropic function of the elastic left Cauchy-Green tensor be = F
e
F

eT , scalar measure quantifying

the amount of plastic flow γ and scalar damage parameter ω:

(1) ψ = (1− ω)ψe(be) + ψp(γ)

The parameter ω grows from zero for the intact material to one for a complete material destruction and

is computed from the damage growth function ω = fd(κ), where κ = max(ǫ̃, κ0), ǫ̃ is an equivalent

strain or energy measure and κ0 is the threshold.

Elastic constitutive relations between Kirchhoff stress tensor τ and left Cauchy-Green tensor

b
e are described through an elastic strain potential ψe:

(2) τ = 2
∂ψe

∂be
b
e

The yield criterion Fp is an isotropic function of the effective Kirchhoff stress tensor τ̂ =
τ/(1− ω) and plastic strain measure γ:

(3) Fp(τ , γ) = τ̃(τ̂ )− q(γ) ≤ 0

Function q represents the yield strength with isotropic hardening. Associative flow rule is assumed.

Whether damage grows is decided on the basis of a nonlocal loading function:

(4) Fd(ǭ, κ) = ǭ− κ ≤ 0

where ǭ is nonlocal equivalent strain or energy measure and κ is the damage history parameter. For

Fd < 0 there is no growth of damage.

The nonlocal averaging is performed through the solution of an additional second order partial

differential equation as first proposed in quasi-brittle damage mechanics [1]:

(5) ǭ− l2∇2ǭ = ǫ̃

l is a material dependent length parameter commonly called the internal or intrinsic length scale. The

Laplacian and the parameter l can be referred to either the deformed or the undeformed configuration

[2].

The gradient enhancement applied to the considered model preserves it from pathological sen-

sitivity to the finite element discretization (Figure 1).
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Figure 1. Deformed mesh and relations between displacement and sum of reactions for perforated plate in

tension for damage-elastic material model

3. Implementation

The focus of this paper is the three-dimensional numerical simulation based on the presented

model. The simulation is performed with the Mathematica-based package AceGen [3]. The pro-

gramme is a novel code generator that consists of the symbolic and the automatic capabilities of Math-

ematica, automatic differentiation technique and simultaneous optimization of expressions. FEM im-

plementation within AceGen consists of symbolic description of a residual vector and tangent matrix

for one element and automatic generation of a code for a chosen FE environment (e.g. AceFEM,

FEAP, ANSYS). Due to this approach the cumbersome derivation of the consistent tangent for the

Newton-Raphson method is avoided.

Numerical verification tests of the described model are performed with the Mathematica-based

package AceFEM. Particularly, uniaxial tension test (c.f. Figure 2) and perforated plate in tension

(c.f. Figure 1) are examined.
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Figure 2. Uniaxial tension test for elastic-plastic model coupled with damage: displacement vs reaction sum

and damage growth
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1. Object of the paper

A new method of the parametrization of models describing interatomic interactions in metal

crystals has been developed. The proposed approach enables us to obtain parametrization conditions

which have a coherent physical interpretation and additionally, they are simpler and more efficient

than those applied classically. The reason is the double use of symmetry: at the continuum level and

the atomistic one.

2. Motivation

At present, there are created more and more complex materials both with structural and func-

tional applications: metal-ceramic composites as well as micro- and spin-electronic devices can be

representative examples. Advanced microscope techniques enable a detailed characterization of the

microstructures of these materials. Information obtained in this way constitutes the basis for building

models at the atomistic level. The models allow us to describe and understand a number of processes

in the materials such as the nucleation and propagation of cracks or dislocation evolution. Addi-

tionally, the atomistic models enable identification of key properties necessary for building reliable

models at the continuum level.

Interatomic interaction in metals are described mostly by means of potentials whose form is

defined by the Embedded Atom Method (EAM) [1]. According to the EAM approach, the energy of

the metal crystal per atom Eat consists of the energy of pair interactions between a central atom and

its neighbors Φ and the embedding energy F of the central atom in an electron density ρ coming from

neighboring atoms:

(1) Eat =
1

2

K
∑

m=1

φ(rm) + F (ρ)

where 1

2
φ(rm) is the contribution to Φ from an atom mth while ρ is a sum of densities f introduced

by successive neighbors:

(2) ρ =
K
∑

m=1

f(rm).

In the above equations, rm is the distance between the central atom and its mth neighbor.

The EAM functions φ and f contain parameters which enable the application of a given model

to various metals. In literature, the parameters are specified at the assumption that the considered

model correctly predicts the crystal properties at the equilibrium state, that is, that the lattice con-

stants, the cohesive energy and the elastic constants are equal to the experimental values. The re-

lationships obtained in this way constitute the key parametrization conditions used classically [1].

These conditions have not a coherent physical interpretation, are not unique and take complex forms.

As a result, the parametrization is not efficient.
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3. Solution

According to the newly formulated conditions [2], the considered EAM model should correctly

reproduce elementary strain processes resulting from the spectral decomposition of the elasticity ten-

sor [3]. The fulfillment of these conditions means that an arbitrary process of small strains will be

proceed in accordance with the experiment. The elementary processes are determined by the crystal

symmetry. Therefore, the obtained parametrization conditions can be further simplified, this time, by

the application of the orthogonal relationships in the point group of the considered crystal. Thanks

to the double use of symmetry, at the continuum level and the atomistic one, the finally formulated

relationships enable more efficient parametrization than the classically used ones.

The developed approach to the parametrization of the EAM-type models is applied to cubic

metals. According to the obtained conditions, the crystal energy per atom Eat as well as the Kelvin

moduli λi, i = I, II, III predicted by the potential should be consistent with the experimental data.

Additionally, the pressure p in the system should be equal to zero:

(3) Eat(ε = 0) = E
exp

coh

(4) p = −
1

3

S
∑

s=1

lsRs(
1

2
φ′

s + F ′f ′

s) = 0

(5) λI =
1

3Ωat

[

1

2

S
∑

s=1

lsφ
norm
s + F ′

S
∑

s=1

lsf
norm
s + F ′′

(

S
∑

s=1

lsRsf
′

s

)

2
]

= λ
exp
I

(6) λII =
1

3Ωat

[

1

2

S
∑

s=1

ls(1− 3bs)φ
norm
s + F ′

S
∑

s=1

ls(1− 3bs)f
norm
s

]

= λ
exp
II

(7) λIII =
2

3Ωat

[

1

2

S
∑

s=1

lsbsφ
norm
s + F ′

S
∑

s=1

lsbsf
norm
s

]

= λ
exp
III

In the formulated conditions, φnorm
s and fnorm

s are the normalized contribution to the shear moduli

coming from the pair interaction and from the electron densities, respectively. These contributions as

well as the structural parameters Rs, ls and bs are determined in [2]. The proposed conditions are used

for the parametrization of the Rosato-Guillope-Legrand potential applied to copper. The obtained

model not only better describes the equilibrium state but also the defect formation. To illustrate the

performance of the formulated model, the shearing process in the plane (1 1 1) is examined. The

simulations are carried out with the use of the buffer layers introduced in [4]
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1. Introduction

In this article we consider the boundary-final value problem for the linear theory of thermo-

microstretch elastic solids introduced by Eringen [1]. It is well known that this type of problem is

ill-posed, but imposing some mild conditions, we will prove some uniqueness and the continuous

dependence results. The data are given for the final time t = 0 and we want to study the solution

at the previous moments. By an appropriate change of variable, we transform this problem into a

boundary-initial value problem. Using the Lagrange-Brun identities, we deduce some preliminary

results that combined with a method based on Gronwall’s inequality will be the principal ingredients

in obtaining the uniqueness and the continuous dependence results. This paper continues the study

started by Bulgariu [2].

A study of uniqueness and continuous dependence upon mild requirements concerning the ther-

moelastic coefficients for the solution of the boundary-value problems associated with the linear the-

ory of thermoelasticity have been made by Ciarletta [3].

Passarella and Tibullo [4] have demonstrated the uniqueness of solutions for the backward in

time problem of the linear theory of thermo-microstretch elastic materials and the impossibility of

the localization in time of the solution of the corresponding forward in time problem. Our results

concerning the uniqueness of solution extend in a particular case the uniqueness theorem of Passarella

and Tibullo [4] and we also discuss a different class of problems than the one considered by them.

Some estimates that prove the continuous dependence of solution with respect to the final data are

obtained.

2. The boundary-final value problem and the transformed problem

The fundamental system of field equations for the the boundary-final value problem is the one

considered by Bulgariu [1] on the time interval (−T, 0], T > 0 and T may be infinite. Using the

change of variables: t  −t, we transform the considered boundary-final value problem (P) into

a boundary-initial value problem (P) on the time interval [0, T ). We observe that only the energy

equation has a different form in the two considered problems because only in this equation occurs the

first order derivative with respect to time.

3. Uniqueness results

We consider the hypotheses:

(H1) the relation symmetry relations for the constitutive coefficients considered holds true and the

conductivity tensor kij and microinertia Iij tensor are positive definite tensors;

(H2) the internal energy density W per unit of volume is a positive semidefinite quadratic form;

(H3) the specific heat is nonpositive, that is a(x) ≤ a0 < 0, where a0 is a constant.
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Theorem 1. Assume that (H1) and (H2) hold true. Then the boundary-initial value problem

(P) has at most one solution.

Theorem 2. Assume that (H1) and (H3) hold true. Then the boundary-initial value problem

(P) has at most one solution.

Remark 1. If we assume that (H1), (H2) and (H3) hold true, we obtain the uniqueness of the

solution of the boundary-initial value problem (P) in Ω× [0, T ), without any procedure of extension.

4. Continuous dependence with respect to the final data

Theorem 3. If ̟ =
[

ui, ϕi, ψ, eij, κij, γi, tij,mij, πi, σ, θ, θ,i, qi
]

is a solution of the boundary-

initial value problem (P) corresponding to the external given data D0 =
[

0, 0, 0, 0, u0

i , u̇
0

i , ϕ
0

i , ϕ̇
0

i , ψ
0,

ψ̇0, θ0, 0, 0, 0, 0, 0, 0, 0
]

, assuming that the hypotheses (H1), (H2) and (H3) hold true, we have the

estimate

(1) E(t) +

∫ t

0

∫

Ω

1

T0

kijθ,i(s)θ,j(s)dvds ≤ E(0) exp (Mt), ∀ t ∈ [0, T )

where M > 0 is a constant which depends on some constants defined in the previous sections and

(2) E(t) =

∫

Ω

[

ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + 3Jψ̇2(t) + 2W (t) − aθ2(t)
]

dv.
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1. Introduction 

In the present analysis the 2 mechanisms – 1 yield criterion (2M1C) model identified in [1] 
to describe the elasto-viscoplastic behaviour of AISI L6 steel at different (but constant) 
temperatures, is extended to account for the effect of temperature change (nonisothermal 
conditions). 

2. Equations of thermo-elastic-viscoplastic material 

The model is based on the assumption of small  strains. Total strain is partitioned into an 
elastic, inelastic and thermal components, θεεεε ij

I
ij

E
ijij ++= , while the inelastic strain in 2M1C 

model can be partitioned itself in two different strain mechanisms, )2(
2

)1(
1 )()( ijij

I
ij AA εθεθε += . The 

complete set of state variables for the thermo-elastic-viscoplastic material consists of elastic strain 
E
ijε  and absolute temperature θ ; internal variables: kinematic and isotropic plastic hardening 

variables )1(
ijα , )2(

ijα  and )1(r , )2(r , respectively.  

The state equations result from the assumed form of the state potential, which is here the 
Helmholtz free energy, decomposed into thermo-elastic ( teρψ ) and thermo-plastic ( tpρψ ) terms, 
after [1]: 

 

))(())(( 0θθθβεεθ
ε
ψρσ −−−=

∂
∂= ij

I
klklijklE

ij

te

ij E , )()()( θαθθβ θ
klijklij E=  

))()((
3

2 )2(
12

)1(
11)1(

)1(
ijij

ij

tp

ij CCX αθαθ
α
ψρ +=

∂
∂= , ))()((

3

2 )1(
12

)2(
22)2(

)2(
ijij

ij

tp

ij CCX αθαθ
α
ψρ +=

∂
∂=  

)1(
11)1(

)1( )()( rQb
r

R
tp

θθψρ =
∂
∂= , )2(

22)2(
)2( )()( rQb

r
R

tp

θθψρ =
∂
∂=  

 

In the above expressions )(θα θ
ij  is the thermal expansion tensor, )(11 θC , )(22 θC , )(12 θC , )()1( θQ , 

)()2( θQ , )(1 θb , )(2 θb  are material parameters, which are temperature dependent (cf [1]). 

Potential of dissipation is assumed (after [1]) not equal to plastic yield surface (non-
associated thermo-viscoplasticity), which allows to obtain non-linear plastic hardening rules, which 
give more realistic description of the material response. 

The rates of state variables are obtained by the use of the classical normalit y rule, while the 
evolution equations for thermodynamic conjugate forces are derived taking the time rate of state 
equations, see Table 1. 
By taking into account the temperature dependence of material characteristics the additional terms 
appear in the above evolution equations, which may play a significant role when solving high 
temperature problems, such as fire conditions or thermal shock problems. 

In the case of thermo-elastic-viscoplastic material, the general coupled heat equation takes 
the following form: 
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which is nonlinear and full y coupled to mechanical problem. Heat flux is given by the Fourier’s 
law:

 jiji kq ,θ−= . 

A more general case of thermo-plastic-damage coupling is described in [2]. 
 

 No coupling Coupling with temperature 

=ijσ&  E
klijklE ε&  θβθθ

θ
β

εε
θ

&])()([ 0 ij
ijI
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∂
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Table 1. Kinetic equations for thermodynamic conjugate forces 
 

2. Numerical implementation 

The mathematic model is implemented into ABAQUS UMAT procedure and numerical 
simulations are performed to investigate the influence of thermo-viscoplastic coupling on the 
material response.The full y implicit backward Euler scheme is chosen, which is always stable and 
very accurate. Adopting the Newton-Raphson method, the iterative solution procedure is defined as 

[ ] )(1)()()1( kkkk RJSS
−+ −∆=∆ , where S∆  is the vector containing the increments of the unknowns, 

[ ]
S

R
J

∆∂
∂=  is the Jacobian matrix and R  is a residual vector, containing the components 

iiS SS
i

ˆ∆−∆=R , where iS∆  is a variable while iŜ∆  denotes the function resulting from the 

evolution rule for i-th variable iS . The iteration procedure is stopped when the norm of R  is 

suff iciently small . The state variables k
n 1+S  in the current k-th iteration are expressed at the end of 

the step as the values at the beginning of the step nS  corrected by the current iterate increments 
kS∆ : k

n
k
n SSS ∆+=+1 . 
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1. Intr oduction 

Life time prediction of turbine blades is of great interest for engine manufacturers in order to 
enhance the engine performances or to optimize the overhaul intervals. To perform accurate li fe 
time predictions, the first step of the approach is to develop a model able to simulate properly the 
mechanical behaviour of the representative volume element. In particular, the choice of the 
constitutive equations and the calibration of the parameters of the model are reall y essential.  

The originality of this work lies on the richness of the experimental database available which 
brings out the high capability of the proposed model to reproduce a very large set of experimental 
data in both isothermal or anisothermal conditions and, thus, to show the sturdiness of the model to 
be included into a life time prediction approach. 

2. Constit utive equations for single crystal plasticity 

As a single crystal nickel based superalloy, AM1 exhibits quite strong elastic and viscoplastic 
anisotropy which must be taken into account in the modelling. A crystal plasticity approach has 
been chosen. Plastic ÀRZ� pH� is the result of glide processes according to a certain number of slip 

systems ³V´. Such an approach has already been widely described by 0pULF� DQG�Cail letaud [1]. 
However, in that study some improvements have been added to the initial crystallographic model. 
The YLVFRSODVWLF�ÀRZ�UXOH, linking the resolved shear stress Ws to the increment of plastic slip sJ�  on 
a given slip system ³ś , is using a sinus hyperbolic form to take into account the saturation of 
viscosity experimentally observed at high strain rates (above 10-1s-1):  
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The threshold rs is called isotropic hardening variable. The internal stress xs is associated to 
the kinematic hardening. The evolution equation for the kinematic hardening contains dynamic and 
static recovery terms to enable the simulation of relaxation and creep tests.  

3. Results 

The experimental database consists of hundreds of mechanical tests performed from 2��&�up 
to �����&��0DQ\�GLIIHUHQW�W\SHV�RI�WHVWV��HLWKHU�LVRWKHUPDO�RU�DQLVRWKHUPDO��are available: tension, 
cyclic loading, hyteresis loop, creep, relaxation, WKHUPRPHFKDQLFDO� WHVWV«� )RXU� GLIIHUHQW�
crystallographic directions were tested: [001], [111], [011] and [123]. First of all , for some specifi c 
crystallographic directions and temperatures, a relevant limited number of isothermal experimental 
tests is defined to carry out the complete calibration of the model. The way to achieve properly such 
a calibration will  be discussed more in details in the presentation. Then, the entire database is 
simulated for validation. Some results are shown on Figure 1.  
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Figure 1. Comparison simulation-experiment for some isothermal experimental tests. 

Once the model is full y calibrated, it becomes possible to predict the mechanical behaviour of 
the representative volume element for more complex anisothermal tests, over the whole temperature 
UDQJH� >���&-�����&@, and, this, whatever the crystallographic direction considered. For instance, 
the evolution of the 0,2% yield stress with temperature for three strain rates, in the <001> direction, 
is shown on Figure 2, together with the simulation of a complex thermomechanical test performed 
EHWZHHQ�����&�DQG������&, along <123> crystallographic direction.  

  

Figure 2. Comparison simulation-experiment for some anisothermal experimental tests. 

To conclude, a constitutive model has been proposed, calibrated and validated on a very large 
database. Many types of experiments are well  described and, in particular, complex 
thermomechanical loadings which are more representative of turbine blade service conditions. The 
sturdiness of such a model with quite litt le number of parameters to be calibrated is shown. Finally, 
it is ready to be included into an industrial li fe time prediction approach.  
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1. Introduction 

The need to solve problems for anisotropic heavy spherical and cylindrical bodies is due to a 
wide range of applications in various industries, construction, and geology. For instance, the 
problems of geomechanics of storing and mining (i.e. monolithic mine working supports) and road 
construction (i.e. tunnel lining) must be solved taking into account central and axial symmetry, 
uniform and/or nonuniform distribution of external and/or internal pressure. Obtaining of new 
analytical solutions is important and urgent for development of engineering methods of amended 
strength analysis, for testing computational algorithms of solving complex problems in which 
individual elements of designs and constructions are similar in geometry and boundary conditions 
and for working out methods for the experimental research of heavy bodies with simple geometry.  

 

Fig. 1. Distribution of the independent invariant of stress tensor (MPa) on the fixed external ( ( )
ExJ • ), 

free from pressures internal ( ( )
InJ • ) and contact ( ( )

CJ • ) surfaces, with radiuses 2,5Inρ = m, 

3,1Cρ = m and 4,3Exρ = m; IJ ϕϕ θθ= σ = σ , IIJ ρρ= σ , 2 2IVJ ϕρ θρ= σ + σ  

2. Method for  solving 

New exact analytical solutions to problems on equili brium state of hollow and combined 
thick-walled heavy transversall y-isotropic spheres [1] and orthotropic cylinders [2], which are fixed 
on the interior or exterior surfaces and are subject to the action of uniform and/or nonuniform exter-
nal or internal lateral pressure, are obtained. When integrated heterogeneous system of Lame diffe-
rential equations in cylindrical and spherical orthogonal coordinates, the variable separation method 
led us to reduce the dimension of the problem, and the usage of generalized power series enabled us 
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to write a general solution. The obtained solutions can set a pattern for exact solutions in particular 
cases of the relations for displacements, stresses and strains at the points inside hollow and 
combined heavy isotropic spheres and cylinders with the similar boundary conditions [3, 4]. 

3. Applications to geomechanical problems 

The reinforced concrete monolithic roof supports of spherical mining and the surrounding 
array of sedimentary rocks are considered as a single mechanical system. The influence of 
construction geometries and material properties on the distribution of the independent invariants of 
stress tensor for sphericall y transversall y-isotropic bodies in cross-sections (Fig. 1) is analyzed in 
the directions of meridian θ  and dimensionless radial ρ%  coordinates. The estimation of an initial 
strength is carried out on the basis of a multicriteria approach taking into account various fracture 
mechanisms and areas where the fracture may be initiated and defined. 

 
Fig. 2. Distribution of radial (  

6,10u − m) and hoop (  
6,10v − m) displacement in reinforced concrete 

cylinder on external, internal and median surfaces, with radiuses 3,0Inρ = m, 5,5Exρ = m 

The problem on equili brium state of heavy reinforced concrete cylinder located on foundation 
soil  is considered. Contact surface area was assumed to be known and unchanged. The reaction of 
soil  is given in the form of a quadratic function which meets the condition that its integral sum 
equals weight of the constructions. The assumption allows us to write the boundary conditions for 
the determination of the integration constants of partial solution. On the basis of this the distribution 
of displacements (Fig. 2) and stresses in transversal cross-sections of horizontal monolithic 
reinforced concrete cylinders are shown, the lower half of which are dug into the soil . 
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1. General 

The paper introduced the results of research on drawabilit y of nickel superalloys continuation, 
mainly on formabilit y INCONEL alloys using advanced drawing processes as hydromechanical 
forming – forming using liquid pressure. The using of INCONEL sheets in cold working processing 
is a faintly recognized question, because of applying this type technological solutions only at short-
waves manufacturing in aircraft industries, for example civil  and milit ary aircraft engines casings. 
Moreover, the consequence of heat-resistance and creep-resistance of nickel superalloys is high 
susceptibilit y of these alloys to plastic strength during deformation. The hydromechanical forming 
of nickel sheet metals is realized only in support from the technologists' practicall y experience, 
which is taken on road of trials and errors. Additionall y, the short-waves production of airplanes in 
comparison to long-waves production of cars, it generates the higher costs of designing and 
manufacturing elements in aircraft industry. 

It in support about many years' experience of team of Department of Materials Technology of 
the Silesian University [1, 2], the use of chosen methods of physic and numeric modelli ng for 
improvement of design process and the recognition of production results of nickel superalloys were 
proposed.  

2. Research and simulations results analysis 

The results of simulation and computer aided designing of jet engine body panels drawpieces 
– cone showed in Fig.1 made of INCONEL 625 sheet metals were contained in this paper. To 
numerical modelli ng the environment of the commercial software ETA/Dynaform 5.7 version and 
its advanced options were applied.  

 
(a) (b) 

 
 

Fig.1. Cone drawpiece made of Inconel 625: (a) charge and industrial drawpiece photography, 
(b) results of cone hydromechanical forming simulations – comparison between die and processing 

drawpiece geometry. 
 
In simulating questions of mechanical state of hydromechanical forming process were used 

the complete data characteristics of INCONEL 625 sheet metals, which were worked out: using 
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basic and technological tests, pointing out the forming limit diagram and conducting industrial tests. 
The practical possibiliti es of using of presented methodology have been presented in the paper. 

3. Conclusions 

The so far obtained research results reveal that there are potential plasticity properties of nickel 
super alloys like Inconel 625, which make it possible to produce the corn drawpiece in the process 
of hydromechanical forming. Simulation using ETA/Dynaform 5.7 software allowed recognizing 
mechanical state of this forming process. Comparison between industrial tests and simulation 
results are good corresponding in range of geometry representation. Simulation tests are being 
carried out at present in order to recommend a modified technology for cones made of Inconel 625 
alloy processing. 
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1. Introduction

In the literature one can find always an interest in describing the governing equations of a

physical process as a variational principle. The interest comes not only from the purely theoretical

view-point but also from the practical one: a variational principle can help to form a general and sys-

tematic approximative procedure for establishing the solution from a direct study of the variational

integral, and then to use it in formulation numerical methods and calculations. In most cases( e.g.

FEM and BVM) of them solutions are searched by minimization techniques in which weak formula-

tion of governing equations appear with arbitrary variations.

2. Stationary action principle

Historically, at the beginning the classical Lagrange and Hamilton’s formalisms were formu-

lated for the point mechanics problems. Accordingly, if a dynamical system is described by the

vector-valued coordinate q and the Lagrangian L = T − V , where T and V are, respectively, the

kinetic and potential energy, then one formulates the principle of stationary action (a variational prin-

ciple of the dynamical system) by requiring that between all curves q = q(t) in a configuration space

V the actual path (i.e. the solution of the system) is that which makes the action integral

I =

t1
∫

t0

L(q, q̇, t) dt(1)

stationary. Taking the first variation δq subject to the conditions δq(t0) = δq(t1) = 0 the stationarity

of the action requires δI = 0, which is equivalent to the Euler-Lagrange’s equation

d

dt

∂L

∂q̇
−

∂L

∂q
= 0 , provided the commutative rule δ

d

dt
q =

d

dt
δq holds .(2)

It is well known that the general equations of continuum mechanics and dissipative phenomena

employed at the present time cannot be derived from Hamilton’s variational principle. The case of

bodies described by hyper-elastic material structure is exceptional [2].

For many years it was a know fact that the equations of heat transfer could not be derived from

exact variational principle. In 1974-1975 B. Vujanović, from Novi Sad, proposed in[3, 4] that in the

case of the irreversibility in time when the energy of the system is not conserved, to describe the irre-

versible phenomena by a Hamilton’s stationary principle one faces with neglecting the commutative

rule between the operation of variation and time differentation.
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3. Dissipative bodies with thermomechanical coupling

Recently the present authors with a coworker [1, 5] while basing on the Vujanović’s observa-

tion, proposed new method for deriving the class of equations appearing in some physical irreversible

processes based on the variational principle which has a Hamiltonian structure. The crucial assump-

tion of the proposed method is in non-commutative rule between operations of taking variations of

the field and their partial time and/or spatial derivatives.

In the paper [1] the principle of stationary action was applied to long-line (telegraph) equation

and to two models of heat conduction: parabolic and hyperbolic ones. In the recent paper [5] conse-

quences of the principle of stationary action formulated for a dissipative body modelled with the help

the material structure with internal state variables was considered. Then the density of the Lagrangian

of the body was proposed in which additionally to the terms responsible for the potential and kinetic

energies a dissipation term has appeared. Possible variations of fields of dependent state variables:

namely the motion function and a vector of internal state variables (ISV), were introduced together

with a non-commutative rule between operations of taking variations of the ISV - field and their partial

time derivatives. Assuming vanishing first variation of the functional the balance of linear momentum

in differential form is received together with evolution equations for internal state variables and stress

boundary condition.

In the present paper we will generalize the recent derivations to the case of thermo-mechanical

coupling. We consider two cases: hyperbolic and parabolic model of heat conduction. In the first case

additional to the absolute temperature a thermal state variable appeares, responsible for the history of

the temperature dependence. This dependence has been already broadly discussed by the first author

and his coworkers in a number of publications [6, 7, 8]. In that model the heat conduction vector is

proportional to the gradient of this new thermal variable. The parabolic model discussed in the paper,

however, is the classical one in which the heat conduction vector is proportional to the temperature

gradient. Then some thermal initial boundary–value problems of technical interest will be analyzed to

reduce them to ordinary differential equations whose solutions are often capable of being expressed

in analytic closed form.
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1. General

The self-consistent estimates [1] of linear overall properties of polycrystals are considered. A

method employing the invariant decompositions of Hooke’s tensors [3, 4] developed in [2] is ap-

plied. The analysis is extended to take into account a non-spherical shape of grains. The attention

is focused on crystals with locally constrained deformation. Steady creep of metals with insufficient

number of easy slip systems can be indicated as an example falling into the class of problems under

consideration.

2. Basic assumptions

One-phase polycrystal is analyzed composed of incompressible anisotropic grains (the local

bulk modulus is infinite). All grains have the same ellipsoidal shape with lengths of ellipsoid axes

a = b 6= c, so that the shape can be described by single parameter α = a/c. Moreover ellipsoid axes

are co-axial with the anisotropy axes of the local properties and the distribution of grain orientation

within the representative volume is random (Fig 1). As a result the overall behaviour of polycrystal is

isotropic.

Figure 1. Idea of the self-consistent model of polycrystal.

3. Results

Due to the above assumptions the overall bulk modulus of polycrystal is infinite. The self-

consistent estimate of the overall shear modulus h̄D is obtained from the following fourth order ten-

sorial equation [1]

〈(L̄− Lc)Ac〉 = 0 , Ac = (I+Pc(Lc − L̄))−1 ,(1)

where 〈·〉 denotes averaging over the orientation space, L̄ and Lc are the isotropic overall stiffness and

anisotropic local stiffness, respectively, Ac is the concentration tensor, I is the symmetrized identity

tensor and Pc is the polarisation tensor. This tensor depends on the overall properties as well as on

the ellipsoid shape and orientation. It can be derived with use of the Eshelby tensor for which specific
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formulae can be found in [5]. It is important for the performed analysis that the polarisation tensor

is a Hooke’s tensor. For the considered case it exhibits transverse isotropy and its representation in

crystal axes is the same for all grains. It is specified in terms of the shape parameter α and h̄D.

Using the procedure proposed in [2] it can be demonstrated that for the wide class of local

anisotropy the tensorial relation (1)1 reduces to the single polynomial equation of 5th degree in h̄D,

which has a single positive root. Using this relation one can study the existence of the finite overall

flow stress for the steady creep of the considered class of polycrystals composed of grains with an

insufficient number of easy slip systems. The results of the analysis are summarized in Fig. 2. The

answer to the posed question depends on the number of independent easy slip systems as well as on

the relative orientation of these systems and the spheroid axis.
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Figure 2. Dependence of an overall shear modulus on the shape parameter for random polycrystals with

insufficient number of easy slip systems (m - dimension of space of constraint deformation; m∗, Case 1 and

2 depend on relation between eigen-subspaces of polarisation tensor Pc and the local anisotropic tensor Lc -

details will be given later).
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1. In tr oduction 

The Polish ventricular assist device (POLVAD_EXT) is made of polymer and is covered with 
a nanocoating of TiN by laser ablation. The results of experimental nanoindentation test, inverse 
analysis and a mathematical model of a nanoindentation test develRSHG� LQ� WKH�$XWKRUV¶�FE code 
were applied in [1] to identify the material model of TiN. The sensitivi ties of WKH� $XWKRUV¶�FE 
model of nanoindentation test to mechanical properties of the soft (polymer) and hard (steel) 
substrates, and the nanocoating of TiN deposited on the substrates are examined in the present 
work. 

2. Materials and Methods 

The model of nanoidentation test is composed of thick polymer or steel, and a TiN 
nanocoating (350 nm). The bilinear material models are used for: a) polymer: 01 = 0.01, 11 = 4.7 
MPa, 02 = 0.03 and 12 = 10 MPa, b) steel: 01 = 0.0015, 11 = 220 MPa, 02 = 0.5 and 12 = 650 MPa and 
c) TiN: 01 = 0.009, 11 = 2 614 MPa, 02 = 0.166 and 12 = 9 107 MPa. For each substrate seven models 
were developed: model 1 ± reference model, and models 2-7 with disturbed parameters of material 
model of TiN. The disturbed parameters of TiN are: a) 11 (models 2 and 3), b) 12 (models 4 and 5), 
and c) 01 (models 6 and 7). Each of disturbed parameters was changed by 5% up in the first version 
of model and down in the second version of model.  

3. Results and Discussion 

The distributions of an effective strain in loading and unloading phases for the two substrates 
and TiN are presented in Fig.1 for the model 1. The difference between Figs.1a-1b and Figs.1c-1d is 
observed in the behavior of the substrate, especiall y in the unloading phase. The polymer exhibits 
hyperplasic behavior, while the steel is a typical elastic-plastic material.  

The force versus displacement for the two substrates and TiN is shown in Figure 2a for model 
1. The difference between substrates is similar to the observation made on the basis of Fig.1. The 
results of sensitivi ty analysis are presented in Fig.2b, as values of a normalized maximum force 
versus version of the material model of TiN deposited on the two substrates. Comparing to the 
reference model (model 1), the biggest sensitivi ty of a maximum force is computed with respect to 
the parameter 11 (models 2 and 3). The variation of 11 results in variation of an elastic modulus. The 
small sensitivi ties considered as values of the normalized force relative to the reference model are 
observed with respect to the parameters 12 (models 4 and 5) and 01 (models 6 and 7). It means that 
the model is not sensitive to the variation of a plastic modulus. The variation of 01 also results in the 
YDULDWLRQ�RI�<RXQJ¶�PRGXOXV��EXW� WKH�PRGHO� LV�QRW� VHQVLWLYH to such variation. The differences of 
sensitivi tities for the two substrates are visible in the models 5 and 7. The variations of 12 and 01 by 
5% down for polymer result in smaller values of the normalized force than it is for steel.  
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a)  b)  

c)  d)  

Fig.1. Distributions of an effective strain in the model 1 of TiN / polymer in the phases of: a) 
loading, b) unloading, and in the model 1 of TiN / steel in the phases of: c) loading, d) unloading. 
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Fig.2. a) The force versus displacement for the model 1: TiN / polymer and TiN / steel, b) The 
normalized maximum force for the models 1-7: TiN / polymer and TiN / steel. 
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Fig. 2: The experimentally deformed shape of sheet metal 
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The main objective of the present paper is the development of identification procedure of the

constitutive model of elasto-viscoplasticity describing the behaviour of nanocrystalline titanium. We

intend to utilize the constitutive model presented by Perzyna (2010). The procedure is based on

experimental observation data obtained by Jia et al. (2001) for ultrafine-grained titanium and by

Wang et al. (2007) for nanostructured titanium. Hexagonal close-packed (hcp) ultrafine-grained

(UFG) titanium processed by sever plastic deformation (SPD) has gained wide interest due to its

excellent mechanical properties and potential applications as biomedical implants.

1. The constitutive model

We propose to introduce some simplification of the constitutive model developed by Perzyna

(2010) by assuming that the internal state variable vector µ = (ǫp, d, ξ) consists of two scalars and

one tensor, i.e. ǫp denotes the equivalent viscoplastic deformation, d defines the mean grain diameter

and ξ is the microdamage second order tensor, with the physical interpretation that (ξ : ξ)1/2 = ξ

defines the volume fraction porosity. The equivalent inelastic deformation ǫp describes the dissipation

effects generated by viscoplastic flow phenomena, the microdamage tensor ξ takes into account the

anisotropic intrinsic microdamage mechanisms on internal dissipation and d describes the dynamic

grain growth during intensive deformation process. We postulate the plastic potential function in the

form f = f(J1, J2, ϑ, µ), where J1, J2 denote the first two invariants of the Kirchhoff stress tensor τ

and ϑ is absolute temperature. The evolution equations are assumed as follows

d
p = ΛP, Lυξ = Ξ, ḋ = D(1)

where

Λ =
1

Tm

〈

Φ

(

f

κ
− 1

)〉

, P =
∂f

∂τ

∣

∣

∣

∣

∣

ξ=const

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

)

−1

,(2)

d
p denotes the rate of inelastic deformation tensor, Tm denotes the relaxation time for mechanical

disturbances, the isotropic work–hardening–softening function κ = κ̂(ǫp, ϑ, ξ, d), Φ is the empirical

overstress function, the bracket 〈·〉 defines the ramp function, Lυ denotes the Lie derivative and Ξ

and D denote the evolution functions which have to be determined.

Let us assume that the intrinsic microdamage process is generated by growth mechanism only.

Based on the heuristic suggestions and taking into account the influence of the stress triaxiality and

anisotropic effects on the growth mechanism we assume the evolution equation for the microdamage

tensor ξ as follows

Lυξ =
∂g∗

∂τ

1

Tm

〈

Φ

[

Ig

τeq(ϑ, µ)
− 1

]〉

.(3)

The tensorial function ∂g∗

∂τ represents the mutual micro(nano)crack interaction for growth process,

τeq = τ̂(ϑ, µ) denotes the threshold stress function for growth mechanism, Ig = b1J1 +b2

√

J
′

2 defines

the stress intensity invariant, bi (i = 1, 2) are the material coefficients which can depend on d. In the
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evolution equation (3) the function g = ĝ (τ , ϑ, µ) plays the fundamental role, and we introduce the

denotation ∂g∗

∂τ = ∂ĝ

∂τ

(
∣

∣

∣

∣

∣

∣

∂ĝ

∂τ

∣

∣

∣

∣

∣

∣

)

−1

. Assuming that the dynamic grain growth is the rate dependent

mechanism (cf. Perzyna (2010)) we postulate

ḋ =
Ĝ(ϑ, µ)

Tm

〈

Φ

[

Id

τd(ϑ, µ)
− 1

]〉

,(4)

where G = Ĝ(ϑ, µ) is the material function, Id = c1J1+c2

√

J
′

2 represents the stress intensity invariant

for grain growth, ci (i = 1, 2) are the material coefficients which may depend on d, and τd = τ̂d(ϑ, µ)
denotes the threshold stress for dynamic grain growth mechanism.

2. The identification procedure

Let us introduce the particular form for the plastic potential function as follows

f =
[

J
′

2
+ n (ϑ, d) (ξ : ξ)1/2 (J2

1
)
]

1

2

, where J
′

2
denotes the second invariant of the stress deviator

of the Kirchhoff stress τ and n = n (ϑ, d) is the material function. From (1)1, (2)1 and (2) we have

the dynamical yield criterion in the form

[

J
′

2
+ n (ϑ, d) (ξ : ξ)1/2

(

J2

1

)]
1

2 = κ

[

1 + Φ−1

(√
3

2
Tmǫ̇P

)]

.(5)

Taking advantage of the description of the microshear banding effects for nanocrystalline titanium we

can propose the relation for the relaxation time (cf. Perzyna (2010))

Tm = T 0

m

[

1 − f 0

ms

1

1 + exp (a − bǫP )

](

ǫ̇P

ǫ̇P
s

− 1

)
1

p

,(6)

where T 0

m, f 0

ms, a, b, p and ǫ̇P
s are material function of d. We propose that the identification procedure

consists of two parts. In the first part the determination of the material functions and the material con-

stants involved in the description of the dynamic yield criterion (5) is presented. As an experimental

base the results concerning experimental observation for ultrafine-grained titanium obtained by Jia et

al. (2001) and for nanostructured titanium obtained from the compression tests at high strain rates

(103−104 s−1) by Wang et al. (2007). The second part is focused on the determination of the material

functions and the material constants appeared in the evolution equations (3) and (4). To do that we

consider a dynamic process of compression test (cf. Wang et al. (2007)).

3. Final comments

There is our hope that proposed identification procedure for the thermodynamical theory of elasto-

viscoplasticity of nanocrystalline metals may be used as a base for the description of the behaviour

of hexagonal close-packed ultrafine-grained titanium processed by sever plastic deformation and may

allow to do the investigation of plastic strain localization and fracture phenomena in nano-mechanical

processes. These coming results and excellent mechanical properties of this kind of titanium make

potential applications possible as biomedical implants.
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1. General

Coupled behaviour is a long-standing domain of interest in physics. These effects are due to

the interaction between mechanics, magnetism, electricity, thermics, etc [1, 2]. For example, the

piezoelectricity phenomena is observed when the permittivity of a material depends on the level of

stress or when the strain depends on the level of the electric induction.

The constitutive laws are usually written separately for each uncoupled behaviour. For an elastic

problem Hooke’s law is given

σ = C · ε ,

where σ, ε ∈ T 2 and the stiffness tensor C ∈ T 4. For uncoupled electric behaviour the dual state

variables are the electric field E = −∇ϕ and the electric induction D

D = ǫ · E ,

where E,D are vectors and ǫ is the second order tensor of permittivity.

For the material exhibiting coupling piezoelectric phenomena the global constitutive law in-

cludes coupling tensorial parameters

σ = C · ε+α · E or D = β · ε+ ǫ · E ,

where α and β are tensors of the third order which have some internal symmetries due to the sym-

metry of the strain and stress tensor, that is

αijk = αjik , βijk = βikj .(1)

In classical continuum mechanics the main role is played by the second and fourth order tensors.

The theory for such tensors is well developed. The properties of the third order tensors which appear

in the coupled theories are not sufficiently described. In our paper the basic properties, the symmetry

groups and the harmonic decomposition for such tensors will be discussed in the spirit of [3].

2. Properties of the third order tensors

The theory of linear operators implies that the third order tensor can be treated as a linear

operator in the following linear mappings

l : T 2
→ T 1 , or l : T 1

→ T 2 .

Therefore for the third order tensors the spectral theorem has no meaning. However, the harmonic

decomposition [4, 3] and the symmetry groups can be discussed for these tensors.

In the paper the attention will be mainly focused on the tensors which exhibit the symmetries

(1). In general the space of the third order tensors is 33 = 27 dimensional but when we take into

account this symmetry the space is reduced to 18-dimensional. In the paper [1] the representation

of such tensors has been presented using the modified Voigt notation in the form of 6 × 3 or 3 × 6
matrices. Such representation will be used in our presentation as well.
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Symmetry group of the third order tensor α is defined as a set of the orthogonal second order

tensors such that

Q ⋆α = αijk(Qei)⊗ (Qej)⊗ (Qek) = α .

On the basis of the above definition one can show that isotropic third order tensors do not exists and

the hemitropic third order tensor has a representation

αijk = αeijk ,

where eijk is the so-called permutation symbol which is completely skewsymmetric. Consequently,

the space of skewsymmetric tensors is one-dimensional. Other symmetry groups will be also ana-

lyzed.

3. Harmonic decomposition of third order tensor

It will be shown that the harmonic (invariant) decomposition of the space of third order tensors

has the form

T 3 = A⊕D ⊕ J ⊕W ,

where A is the one-dimenional space of fully skewsymmetric tensors, D is the 7-dimensional space

of fully symmetric and traceless tensors, J is the 9-dimensional space generated by tensors

1⊗ u , 1⊗ v , 1⊗w ,

where u,v,w arbitrary non-coaxial vectors and 1 is the second order identity tensors and W is the

10-dimensional space orthogonal to A, D and J .

The symmetry groups and the harmonic decomposition will be also discussed for the two-

dimensional third order tensors.
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In this work, the elastic fields are considered as tensor fields defined on spherical surfaces.

Subsequently, the complete three-dimensional equations of elasticity for functionally graded (FG)

spherically isotropic materials are reformulated using vector and tensor spherical harmonics (VSHs

and TSHs), which are defined on the surface of the unit sphere. In the literature, TSHs have been

mainly employed to describe the angular momentum in quantum mechanical studies. This alternative

formulation not only provides a rigorous approach for finding solutions of the relevant problems in

the literature, but also leads to the solutions of the more involved boundary value problems with less

effort [1, 2]. The exact determination of the elastic fields associated with spherical multi-inclusions/-

inhomogeneities /-inhomogeneous inclusions with FG spherically isotropic constituents and isotropic

surrounding matrix is of particular interest. In the absence of the matrix, the problem reduces to a

multi-phase spherical elastic solid. In addition to a prescribed piecewise nonuniform misfit strains or

eigenstrains distribution within the spherical regions, a nonuniform external applied loading may be

prescribed as well. A schematic of the problem of interest in shown in Fig. 1.

x1

x2

x3

O

r

θ

φ

ΓN+1

Γ2

Γ1

RN+1

RN
R2

R1

Figure 1. The nomenclature of a spherical core-multi-shell ensemble.
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1. Introduction 

Influence of plastic strain induced γ→α’  phase transformation, that occurs in metastable 
materials strained at very low temperatures, on acceleration of the shakedown process is 
investigated. The main mechanism that leads to the accelerated shakedown consists in the micro-
structural evolution associated with phase transformation, which results in substantial increase of 
the volume fraction of secondary phase (elastic) in the matrix composed of primary phase (elastic-
plastic). Thus, the classical shakedown conditions are substantiall y altered by significant reduction 
of dissipative nature of two-phase continuum due to the lattice transition from fcc to bcc structure. 
In this context, special class of two-phase materials with functionall y graded microstructure, 
obtained at cryogenic temperatures [3] as a result of controlled plastic strain induced phase 
transformation, is studied. Among other materials, the austenitic stainless steels are known to 
behave in a metastable way when strained at very low temperatures and are extensively used to 
construct components of the superconducting magnets. 

2. The constitutive model 

A linearised law describing kinetics of the γ→α’  phase transformation in metastable austenitic 
stainless steels, speciall y adapted to extremely low temperatures, was postulated by Garion and 
Skoczeń [1]:  

( ) ( )( )( )ξξσεξ ξ −−= L
p ppHpTA &&& ,,  

The constitutive model used to describe mathematicall y the plastic strain induced γ→α’  phase 
transformation at very low temperatures [2] involves mixed kinematic/isotropic strain hardening 
where two fundamental effects play important role: interaction of dislocations with the martensite 
inclusions and increase in transient material tangent stiffness due to the evolution of harder 
martensite content within the softer austenitic matrix.  

dpCdRdCXdXdXd R
p

Xmaa
)(;)(

3

2 ξεξ ==+=
+

 

It is assumed that the back stress increment is composed of the classical term which corresponds to 
the behaviour of the austenitic phase (dXa) in the presence of localized small  inclusions, uniformly 
distributed and randomly oriented in the RVE, and a term related to the combination of austenite 
and martensite via the homogenization algorithm (dXa+m). The interaction of dislocations with the 
martensite inclusions is reflected by the hardening modulus that depends on the evolution of the 
volume fraction of martensite. Here, an approximation based on the micro-mechanical analysis has 
been used:  
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On the other hand, evaluation of the transient tangent stiffness of two-phase continuum (for updated 
proportion between the phases) is based on the classical homogenization scheme and takes into 
account the local tangent stiffness moduli  of the constituents, as postulated by Hill , 1965. Mori-
Tanaka homogenization algorithm has been used in order to obtain instantaneous tangent stiffness 
operator of two-phase continuum:  
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where Ca+m denotes surplus tangent stiffness modulus. Finall y, the mixed hardening is described by 
the following model:  
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It is worth pointing out that the model is attractive in view of its simplicity and relatively small  
number of parameters to be identified at cryogenic temperatures.  

3. Shakedown of functionally graded structural members (FGSM) 

When analyzing the phase transformation process in the basic structures, the concept of 
functionall y graded structural members (FGSM) has been developed. The rods of circular cross-
section subjected to torsion (Fig.1) [5] and the beams of rectangular cross-section subjected to 
bending [3] at very low temperatures are characterized by functional distribution of mechanical 
properties in the direction orthogonal with respect to their axis. The response of FGSMs to 
quasistatic and to cyclic loads has been investigated [4]. In the case of quasistatic torsion and 
bending, closed form analytical solutions were obtained. For cyclic loads, accelerated shakedown 
due to the evolution of microstructure has been observed in the course of numerical simulations.  

 

 

 
Fig. 1 Shakedown of functionall y graded structural members subjected to cyclic torsion. 

 
Evolution of two-phase continuum, where the elastic-plastic matrix is graduall y replaced by the 
elastic inclusions, clearly indicates that in the limit case where 100% of primary phase is replaced 
by the secondary phase the shakedown occurs by definition. This important and new conclusion has 
very practical meaning. As soon as the γ→α’  phase transformation begins, the evolution of material 
structure accelerates the process of adaptation of structural members to cyclic loads and, therefore, 
enhances their fatigue li fe when compared to the classical elastic-plastic structures. Finall y, this 
particular feature of structures made of metastable materials is explained in the framework of Melan 
and Koiter adaptation/inadaptation theorems.   
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1. Introduction

In the presented paper the idea is to replace the classical gradient operator in viscoplastic flow

rule by the fractional one to define the specific case of what we call fractional viscoplasticity (the

case with fractional rate of viscoplastic strains was discussed in [6]).

2. Fractional viscoplasticity

Classical viscoplastic flow we define as [3, 4]

(1) dp = Λvpp,

where dp denotes the rate of viscoplastic strains, Λvp and p denote flow magnitude and direction,

respectively. The explicit definition for Λvp and p can be given as

(2) Λvp =
1

Tm

〈Φvp(
f

κ
− 1)〉 =

1
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〈(
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−1

,

whete f denotes the potential function, κ is the isotropic work–hardening–softening function, Tm is

relaxation time, ξ denotes the intrinsic anisotropic microdamage and τ is Kirchhoff stress tensor.

So we can rewrite classical formulation using fractional gradient operator as

(3) p = RLC
Θ
Dα

a+,b−f(τ )
(
∣

∣

∣

∣

RLC
Θ
Dα

a+,b−f(τ )
∣

∣

∣

∣

)

−1

,

where RLC
Θ
Dα

a+,b− denotes Right–Left-Caputo (RLC) partial fractional derivative operator [5] for

τij ∈ (a, b) and Θ denotes the skewness parameter [2]. Lest us emphasise that terminals a and b

are not constant, they depend on current thermomechanical state, hence we utilise so called ”short-

memry” principle [1].

Formal definition of the RLC fractional derivative is

(4) RLC
Θ
Dα

a+,b−f(τ ) = −
[

cL (α,Θ) CDα
a+f(τ ) + cR (α,Θ) CDα

b−f(τ )
]

.

In Eq. (4) we have:

(5) cL =
sin( (α−Θ)π

2
)

sin(πα)
,

(6) CDα
a+f(τ ) =

1

Γ(n− α)

τijw

a

dnf(u)

dun

(τij − u)α−n+1
du,

(7) cR =
sin( (α+Θ)π

2
)

sin(πα)
,

(8) CDα
b−f(τ ) =

(−1)n

Γ(n− α)

bw

τij

dnf(u)

dun

(u− τij)α−n+1
du,

where Θ denotes the skewness parameter, Γ is gamma function and n = [α] + 1 where symbol [·]
denotes integer part of a real number.
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3. Example

Let us consider a yield surface of the HMH type written in a stress principal directions (we

assume that τ3 = 0 for simplest calculations)

(9) τ 2
1
− τ1τ2 + τ 2

2
− κ2 = 0.

It can be shown that for a such case the unnormalized flow directions are:

• through direction 1

RLC
Θ
Dα

a+,b−
τ1

f(τ ) = −[cL (α,Θ) CDα
a+

τ1

f(τ ) + cR (α,Θ) CDα
b−

τ1

f(τ )],(10)

• through direction 2

RLC
Θ
Dα

a+,b−
τ2

f(τ ) = −[cL (α,Θ) CDα
a+

τ2

f(τ ) + cR (α,Θ) CDα
b−

τ2

f(τ )],(11)

where

CDα
a+

τi

f(τ ) =
Γ(3)

Γ(3− α)
(τi − a)2−α + (2a− τj)

Γ(2)

Γ(2− α)
(τi − a)1−α,(12)

CDα
b−

τi

f(τ ) =
Γ(3)

Γ(3− α)
(b− τi)

2−α + (τj − 2b)
Γ(2)

Γ(2− α)
(b− τi)

1−α,(13)

for i, j ∈ {1, 2} but i 6= j and 0 < α < 1.

Some illustrative examples will be presented.
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[2] Leszczyński J.S. An introduction to fractional mechanics. Monographs No 198. The Publishing

Office of Czestochowa University of Technology, 2011.

[3] P. Perzyna. The thermodynamical theory of elasto-viscoplasticity. Engineering Transactions,

53:235–316, 2005.

[4] W. Sumelka. The Constitutive Model of the Anisotropy Evolution for Metals with Microstructural

Defects. Publishing House of Poznan University of Technology, Poznań, Poland, 2009.
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1. Introduction

The materials with double porosity play an important role in many branches of engineering, e.g.,

the petroleum industry, chemical engineering, geomechanics, and, in recent years, biomechanics. The

quasi-static theory of elasticity for materials with double porosity in the framework of mixture theory

to model the flow and deformation behavior of porous media characterized by two coexisting degree

of porosity was presented by Aifantis and his co-workers [1], [2]. The Aifantis’ theory unifies the

earlier proposed models of Barenblatt’s [3] for porous media with double porosity and Biot’s [4] for

porous media with single porosity.

However, Aifantis’ quasi-static theory was incomplete, in the sense that it ignored the cross-

coupling effects between the volume change of the pores and fissures in the system. This deficiency

was eliminated and cross-coupled terms were included in the equations of conservation of mass for the

pore and fissure fluid and in the Darcy’s law for solid with double porosity (see [5]). The significance

of the cross-coupling effects on the pore and fracture fluid pressure response of double porosity media

was highlighted by Khalili [6].

In the governing equations of the above mentioned theories of poroelasticity the inertial term

was neglected and the quasi-static problems were investigated. On the other hand, inertial effect play

a pivotal role in investigation of various problems of vibrations and wave propagation through double

porosity media. Therefore, it is important to study a full dynamic model for materials with double

porosity. The fully dynamic system to describe deformation in single porosity media was developed

by Biot [7].

In the present paper, we shall consider flow and deformation processes of the double porosity

media in the case for with the inertia effect is included (full dynamic case). Some basic results of the

classical mathematical theories of elasticity are generalized and the following results are obtained:

the properties of plane harmonic waves are established, the fundamental solutions of equations of

steady vibrations are constructed, the Green’s formulae in the considered theory are obtained, the

uniqueness theorem of the external boundary value problems (BVPs) is proved, the representation

of Galerkin type solution is obtained, the basic properties of the surface and volume potentials and

singular integral operators are established, and finally, the existence theorems for the external BVPs

are proved by means of the boundary integral method and the theory of singular integral equations.

2. Basic Equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R3, u(x) is the dis-

placement vector in solid, u = (u1, u2, u3); p 1(x) and p 2(x) are the pore and fissure fluid pressures,

respectively. The system of homogeneous equations of steady vibrations in the full coupled linear

theory of elasticity for solid with double porosity has the following form

µ ∆u + (λ + µ) grad div u − β1 grad p 1 − β2 grad p 2 + ρω2 u = 0,

(k1 ∆ + a1)p 1 + (k12 ∆ + a12)p 2 + iω β1 div u = 0,

(k21 ∆ + a21)p 1 + (k2 ∆ + a2)p 2 + iω β2 div u = 0.

(1)
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where ∆ is the Laplacian, λ, µ, βj, kj, k12, k21, αj, α12, α21 and γ are the constitutive coefficients,

aj = iω αj −γ, alj = iω αlj +γ (l, j = 1, 2), ω is the oscillation frequency, ω > 0, ρ is the reference

mass density, ρ > 0.

Let S be a closed smooth surface surrounding the finite domain Ω+ in E3, Ω̄+ = Ω+∪S, Ω− =
E3\Ω̄+, n(z) is the external unit normal vector to S at z ∈ S. The basic external BVPs of steady

vibrations in the full coupled linear theory of elasticity for solid with double porosity are formulated

as follows: find a regular solution U = (u, p1, p2) to system (1) in Ω− satisfying the boundary con-

dition lim
Ω−∋x→z∈S

U(x) ≡ {U(z)}− = f(z) in the problem (I)−
f

and lim
Ω−∋x→z∈S

R(Dx,n(z))U(x) ≡

{R(Dz,n(z))U(z)}− = f(z) in the problem (II)−
f

, where f is the known five-component vector

functions, R is the stress operator.

3. Basic results

Theorem 1. Through a solid with double porosity propagates three longitudinal and two trans-

verse plane waves; the longitudinal plane waves are damped and the transverse plane waves have the

constant amplitude.

Theorem 2. The external BVPs (I)−
f

and (II)−
f

have one regular solution.

Theorem 3. If S ∈ C2,ν , f ∈ C1,τ (S), 0 < τ < ν ≤ 1, then a regular solution of the

BVP (I)−
f

exists, is unique and is represented by sum U(x) = Z
(2)(x,g) − iZ(1)(x,g) for x ∈ Ω−,

where Z(1)(x,g) and Z(2)(x,g) are the single-layer and double-layer potentials, respectively, and g

is a solution of the singular integral equation 1

2
g(z)+Z(2)(z,g)− iZ(1)(z,g) = f(z) for z ∈ S which

is always solvable for an arbitrary vector f .

Theorem 4. If S ∈ C2,ν , f ∈ C1,τ (S), 0 < τ < ν ≤ 1, then a regular solution of the BVP

(I)−
f

exists, is unique and is represented by sum U(x) = −iZ(2)(x,g)+Z(1)(x,g) for x ∈ Ω−, where

g is a solution of the singular integral equation −1

2
g(z) − iRZ(2)(z,g) + RZ(1)(z,g) = f(z) for

z ∈ S which is always solvable for an arbitrary vector f .

Theorems 3 and 4 are proved by means of the boundary integral method and the theory of

singular integral equations (for details, see [8]).
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FLOW STRESS IN UNCONVENTI ONAL M ETAL FORMING PROCESSES 
 
 

M. Tkocz, J. Pawlicki and F. Grosman  
Silesian University of Technology, Department of Materials Technology, Katowice, Poland 

 
 

There are two fundamental characteristics of materials formability: the flow stress and the 
limit deformation. Determining the flow stress function is necessary for mathematical modeling and 
designing of metal forming processes. It is frequent that the strain path during unconventional 
forming changes in an oscillatory manner [1]. In these conditions the flow stress curves differ 
substantiall y from the commonly known, classic strain-hardening curves (Fig.1) [2]. 
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Figure 1. The effect of cyclic change of the strain path on the flow stress for copper;  

parameters of reversible tRUVLRQ��IUHTXHQF\���+]��DPSOLWXGH���� 

In order to perform the unconventional cold forming tests with cyclic change of the strain 
path, the unique research stands were developed in the Department of Materials Technology at the 
Silesian University of Technology [3,4]. Specimens were made of electrolitic copper and austenitic 
steel. Analysis of the tests results allowed to determine functional relationships between the flow 
stress Vp, strain H and the deformation history hH for each tested material: 

(1) � �HHVV hpp ,  

The deformation history is described by: the strain Hsin in the single deformation phase, the 
change of principal axis direction .s and the principal strain components H1, H2, H3 in subsequent 
deformation phases, the number of deformation phases ndef and the total strain Htot.  

A series of experiments were performed for various loading schemes. The most favourable 
effects were achieved when deformation was realized by reversible torsion or by complex loading 
that combines simultaneous tension or compression with reversible torsion. Advantages of such 
deformation techniques include decreasing the maximum flow stress values and increasing the limit 
deformation values. 
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An extensive experience has been gained during research, both concerned with the technique 
for performing the deformation tests under complex loading conditions as well  as the measurement 
and data acquisition. On this basis, an original method has been developed for material testing 
under cyclicall y varying, complex loading within large plastic strain range. Moreover, two other 
laboratory research stands have been developed which enable rolling [5,6] and forging [3] aided by 
shear stresses. 
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1. General 

The modeling of mechanical properties of material is very important due to its engineering 
applications. and useful because correctly constructed and employed model allows precise estimate 
the behavior of material under complex load state. In majority known from literature papers 
anisotropic linear elastic material [1] or isotropic nonlinear elastic material [2] is taken into 
investigations. Hardest and still  open problem is description of mechanical properties by 
simultaneous pronouncement of material anisotropy and nonlinear elasticity. An example of such 
material can be car’s tarpaulin. The main aim of this work is construction an energy-based model of 
mechanical properties of nonlinear elastic orthotropic material on the example of cars tarpaulin 
under plane state of stress. 

2. The constitutive relations of the model 

Basing on approximations of the experimental characteristics and using a phenomenological 
conception of description (see Fig. 1), the main constitutive relations of energy-based model were 
introduced. 

 

 
Fig. 1. Geometrical interpretation of stress state  

 

Relations between normal stresses and strains in plane state of stress can be written as:  
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and after series of transformations:  

(2)    
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The introduction of theoretical relation between shear stress and deformation angle is possible 
in the way of extraction the pure volumetric deformations in the uniaxial tension test. The residual 
part of energy represents the energy of deformation comes from shear stresses in plains sloped to 
tensile directions at an angle of 45o. 

Let’s take a plane state of stress in 1-2 plane and 1 as the fiber direction. Then basing on 
energy conservation principle, the analytical form of the strain energy density function can be 
expressed as:  

(3)    
)( 12122211∫ ++= γτεσεσ dddW . 

3. Stabili ty assumptions 

According to mathematical definition of stabilit y given in [3] for material deformation state, 
we can write that:  
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The regions of stabilit y in space 1221 ,, τσσ  can be selected by applying Sylvester’s theorem 
to (4) presented as quadratic form. 

4. Conclusions 

The main conclusions are the following:  

- the mechanical properties of nonlinear-elastic orthotropic material can be modeled with using 
an energy-based model, 

- nonlinear elasticity and orthotropic properties of material have a significant influence on 
shape of stabilit y region, 

- the classic form of Hook’s law can not be applied to stress-strain relations description in case 
of nonlinear elasticity.  

5. References 

 
[1] R. Mucke and O. Bernhardi (2003). A constitutive model for anisotropic materials based on 

Neuber's rule, Computer methods in applied mechanics and engineering 2003, vol. 192, no37-
38, 4237-4255 . 

[2] R.W. Ogden (1997). Non-linear elastic deformations, Dover Publications, Mineola, New 
York. 

[3] T. Wegner (2005). Matematyczne modelowanie mechanicznych właściwości materiałów, 
Biuletyn WAT, vol. LIV, nr 12, 5-51. 



112 38th Solid Mechanics Conference, Warsaw, Aug. 27–31, 2012

MODELING THE STRAIN INDUCED MARTENSITIC TRANSFORMATION UNDER

IMPACT AND ITS INFLUENCE ON THE TAYLOR-QUINNEY COEFFICIENT

R. Zaera1, J.A. Rodrı́guez-Martı́nez1 and D. Rittel2

1Department of Continuum Mechanics and Structural Analysis. University Carlos III of Madrid.

Avda. de la Universidad, 30. 28911 Leganés, Madrid
2Faculty of Mechanical Engineering, Technion, 32000 Haifa, Israel

1. Abstract

The main source for temperature increase in the absence of external heat usually comes from

plastic dissipation. In practice, a correct evaluation of this dissipation is needed for a proper evaluation

of material softening in high strain rate applications. Following Tresca [1], Taylor and coworkers [2,

3] were the first who observed that plastic work is not entirely converted into heat in the deformation

of metals, so that part of it is stored in cold work. Following these seminal contributions, the Taylor-

Quinney coefficient β has been defined as the ratio of dissipated to plastic works (in its integral form

βint), or dissipated to plastic powers (in its differential form βdiff ). These coefficients are used to

calculate the temperature increase in the simulation of dynamic processes.

Different authors have measured those coefficients in polymers and metals by using a variety

of experimental techniques such as thermography, embedded thermocouples or high speed infrared

detectors. For the sake of simplicity it is often assumed that both β factors are constant, usually

taking a value lower than 1, or equal to 1 when all the plastic work is used to heat the material [4].

Once determined, they can be used in a model to calculate thermal output work as a fraction of the

dissipated input plastic power. However, different authors reported a functional dependence of βint

upon strain and/or strain rate [5, 6, 7], a fact that may significantly complicate the solution of the

coupled heat equation.

When plastic deformation is governed by dislocation slip, this dependence has been explained

through the effect of strain hardening in the dislocation density increase and work converted into

heat. However additional processes may take place during plastic deformation, of which twinning is

quite commonly observed, as a mechanism that stores little energy of cold work while contributing

significantly to the strain hardening. Additional phenomena may be induced by high rate straining

of crystalline solids, among which dynamic recrystallization [8], or even phase transformations, such

as the conversion of austenite to martensite, well known to occur in a reversible way in pure iron

[6] or to develop in many ferrous alloys such as metastable austenitic steel of the 3XX series [9]. In

such cases, the measured temperature rise comprises the effects of exothermal phase transformations

during which latent heat is released. When this is the case, a simple ratio of the thermal to mechanical

work, into which this extraneous heat source is included, may yield effective values of βint which

exceed 1, as reported e.g. by Rittel et al. [6] for pure iron, by Rusinek and Klepaczko [7] for TRIP

steels or by Jovic et al. [10] for austenitic steels.

Considering specifically strain-induced phase transformations, the Strain Induced Martensitic

Transformation (SIMT), is found in multiphase TRIP steels and metastable austenitic grades. This

type of martensitic transformation occurs in a given range of temperatures Mσ

s
to Md covering the in-

service conditions of TRIP and austenitic steels in many industrial applications. Above Mσ

s
the stress

needed for martensite nucleation exceeds the flow stress of the austenitic phase, which should thus

strain-harden to sustain martensite formation. As the temperature rises, austenite stability increases

thereby limiting the transformation. Above Md, martensite is not produced anymore.

Therefore a strong coupling is expected to exist between SIMT and heat generation in these
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alloys: SIMT contributes to heat through a latent heat term, and heat, in turn, hinders SIMT. Thus the

latent heat released during martensitic transformation should modify the ratio of dissipated to plastic

power. And the weight of dislocation mediated (slip) plasticity in the inelastic deformation of the

alloy should progressively decrease as austenite transforms into martensite, analogous to a twinned

phase, thus leading to additional changes in the value of the stored energy of cold work. All these

factors will most likely affect the value of the Taylor-Quinney coefficient upon deformation.

This contribution presents a theoretical approach to evaluate the variability of the Taylor-Quinney

coefficient in steels exhibiting SIMT. A constitutive model, previously proposed by Zaera et al. [11],

and now modified to account for the different heat rates, has been used. This model includes tem-

perature effects in the phase transformation kinetics, and in the softening of each solid phase through

the use of a homogenization technique. The model also allows considering the influence of triaxiality

in the SIMT. The new model sheds light on previous experimental results reporting unusual (> 1)
values for βint, [6, 7, 10], apparently related to an exothermal phase transformation, through a differ-

ential treatment of the dissipative terms, namely latent heat, and heat due to austenite and martensite

deformation. Likewise the model accounts for the strong coupling existing between strain rate, stress

state, heat and martensitic transformation, thus allowing to perform a thorough analysis of their influ-

ence in the evolution of the ratio of dissipated to plastic work. The variability observed in the integral

Taylor-Quinney coefficient shows the inherent limitations of assuming a constant value of βint when

modeling high strain rate problems in alloys showing SIMT. On the contrary, taking into account

the functional dependence of βint avoids considering an averaged value which may either under- or

over-estimate the heat dissipated during the deformation process.
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1. Introduction 

The martensitic phase transformation in austenitic steels may be induced by changes of 
temperature, stress or plastic deformation. The growth of the second phase affects strength 
properties of material, particularly the hardening rate occurring during monotonic or cyclic 
deformation. This phenomenon should be taking into account in formulation of the constitutive 
equations. The materials subjected to martensitic transformation have been extensively investigated 
by applying the framework of thermodynamic of irreversible processes with account for internal 
state parameters [1, 2, 3]. The internal variables represent phenomenologicall y the internal structure 
of material and its effect on the macroscopic response during plastic deformation accompanied by 
martensitic transformation. The selection of proper internal variables, formulation of the Helmholtz 
free energy and the dissipation potential, provide a framework for formulation of constitutive 
relation specif ying flow rule, hardening rate and phase evolution.  

The present work is aimed at description of the inelastic material response during coupled 
plastic deformation and martensitic transformation occurring during varying stress and temperature 
states. The main attention is focused on the identification of the thermomechanical internal 
variables and the conjugate driving force associated with progressive or reverse plastic flow and 
martensitic transformation. The assumed free energy and dissipation functions provide specification 
of driving and dissipative forces. The model is applied to simulate uniaxial and biaxial cyclic 
deformation curves and related temperature variations. 

2. Material model ± main assumptions 

There are two modes of martensitic transformation: mechanicall y induced [1] (stress-assisted 
and strain-induced martensite) or thermally induced [2]. These two modes correspond to different 
generation of the nucleation sites and to different morphologies of martensite in a form of plate or 
lathlike structures. In the li terature, two kind of martensite are distinguish, namely the martensite 
induced by proper temperature variation and the martensite induced by stress or plastic strain 
variations [1, 2]. The most popular macroscopic parameter � representing the volume fraction of 
martensite can now be decomposed into two portions, T V[ [ [ � , where T[  represents the fraction 

of martensite induced by temperature variation and V[  is the martensite fraction transformed by 

stress or plastic strain variation (oriented martensite). 
The two-phase material is treated as a thermodynamic system with three coupled irreversible 

processes namely, plastic deformation and two kinds of phase transformation. Thus, three 
conditions of process occurrence must be formulated. 

x the yield condition 

(1)  2( ( , , )) ( , ) 0,p ij ij ij pF J f X T R TV [ [ � � d   

x the condition of transformation induced by stress variation 

(2)  � �� �3
1 12 ( , , ) 0tr d d

ij ij ij ij TF s Z s Z R TV VE [ [ �6 � � � � d ,  
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x the condition of transformation induced by temperature variation (progressive transformation 
DXVWHQLWH:PDUWHQVLWH�DQG�reverse transformation martensite:DXVWHQLWH) 

(3)  > @> @2 2 3( , , ) ( , , , ) 0tr
T T T m TF R T R TV V[ [ V [ [ �6 � �6 � d ,  

where sij is the stress deviator, iim VV 3
1  is the mean stress and T denotes the temperature. T6  and 

V6  are the driving forces conjugate to volume fraction of martensite. The yield condition (1) takes a 

familiar Huber-Mises form, but the kinematic hardening represented by the translation of yield 
surface is specified the deviatoric tensor ijf  related to the back stress ijX . Equation (2) represents 

the transformation condition connected with the stress loading but it can be activated by 
temperature variation and equation (3) determines the condition of transformation induced by the 
temperature variation. Next, the set of internal parameters is chosen, two parameters connected with 
plastic straining: microstrain � conjugate to the backstress X, z conjugate to the backstress Z and 
two parameters representing volume fraction of martensite: T[ , V[  conjugated to driving force T6  

and V6 . The specifi c free energy is assumed in the form: 

(4)       
� �� �

� �

1 1 1
1 22 2 2

,

      ( ) ln ( , )

                   (1 )

o

e e e T
ijkl ij kl m o T ij ij ij ijT

ch m ch T ir

T c T T C C z zH V

V

U H H JH U [ [ K K

U M M [ [ \
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� �' � � �
 

where , ,ch ch m ch aM M M'  �  is the difference between chemical energy of austenite and martensite. In 

turn, 1 2(1 )ir TV\ M [ [ M [ [ � �  is interaction energy between austenite and martensite. Assumption 

of the associated flow rule (except microstrain � and metallurgical strain) allow to deduce a set of 
constitutive and evolutions equations. 

3. Simulation of cyclic uniaxial loading and cyclic changing of temperature 

The proposed model has been applied to simulate cyclic hardening response for cyclic 
tension-compression tests and for varying temperature test. The model parameters for austenitic 
steel AISI 304 were specified from the identification on the basis of experimental data for the 
steady state of cyclic tension and compression and from the li terature. Examples are presented in 
Fig. 1. 

    
a)     b)    c) 

Fig. 1. a) Dependence of the volume fraction of martensite on temperature, b) the hysteresis 
loop for stress below yield stress, c) the hysteresis loop for the stress above yield stress. 
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1. Introduction  

The increasing use of plastic products worldwide is causing considerable damage to the 
environment; therefore, biodegradable plastics (plastics that can decompose in the natural 
environment) and bio-based plastics (plant-derived or recyclable resource-based plastics) are being 
extensively investigated, and new biodegradable and bio-based plastics are continuously being 
developed. Poly(lactic acid) (PLA) is a typical biodegradable bio-based polymer (plant-derived 
polymer). Polymer blends/alloys or natural fiber reinforcing have been required to overcome the low 
impact resistance and the brittleness of PLA. Because poly(butylene adipate/terephthalate) (PBAT) is 
a ductile and biodegradable polymer, polymer alloys of PLA and PBAT have great potential for high 
impact strength.  

In the present study, the stress±strain curves of PLA and PBAT polymer alloys were measured 
at high strain rates using a tensile split Hopkinson pressure bar (Kolsky bar). The effects of the 
addition of dialkyl peroxide (compatibili zing agent) and the mixing ratio of PLA and PBAT on the 
maximum stress, the elongation at break, and fracture morphology were also discussed.  

 
 
 
 
 
 
 

Figure 1  Experimental setup for dynamic tensile tests. 

2. Specimens and experimental methods 

PLA and PBAT alloys of differing ratios were prepared using PLA from Toyota Motor 
Corporation (Toyota Eco-Plastic S-17) and PBAT from BASF (Ecoflex). In order to examine the 
effect of a compatibili zing agent, dialkyl peroxide (NOF Corporation, PERHEXA 25B) was used. 
The mixing ratios of PLA and PBAT were 60/40, 50/50, and 30/70. The mixing ratios of 
PLA/PBAT/dialkyl peroxide were 60/40/1, 50/50/1, and 30/70/1. We prepared the polymer alloys 
using a twin-screw extruder (Technovel Co., Osaka Japan��DW�����&��7KH�VFUHZ speed was 400 rpm, 
and the feed rate was 100 g/min. Af ter melt mixing, the strands prepared by the twin-screw extruder 
were cooled rapidly, pelletized, and then dried. Next, 10-mm-thick plates were prepared using a 
FRQYHQWLRQDO�KRW�SUHVV�DW�����&�DQG���03D�IRU����PLQ�� 

'\QDPLF�WHQVLOH�WHVW�VSHFLPHQV�ZLWK�D�JDJH�PDUN�DUHD�RI�DSSUR[LPDWHO\���PP�î���PP and a 
gage length of 4 mm were used. Specimens for dynamic tensile tests were produced from plates of 5 
mm thickness using a milli ng machine. At high strain rates of 500 to 1000 s-1, the tensile properties of 
the specimens were examined by the tensile split Hopkinson (Kolsky) bar test, as shown in Fig. 1. The 
input and output bars were made of stainless steel (SUU304), and their diameter and length were 12 
mm and 2000 mm, respectively. Strain gages were applied to both the input and output bars at 

Strain gage
1750

2000

Strain gage

2000

350
12



Session: Experimental Mechanics 119

distances of 1750 mm and 350 mm from the specimen, respectively. Because the stress histories were 
almost the same on both ends of the specimens, the strain and stress on the specimens were calculated 
from the strain on the bars, as measured by the strain gages, using the following equations [1-2]: 
 
(1) 
 

(2) 
 

 +HUH�0I DQG�0T are the axial strains induced in the input bar by the incident wave and in the 
output bar by the transmitted wave, respectively. E and c3 DUH�<RXQJ¶V�PRGXOXV�DQG�HODVWLF�ZDYH�
velocity, respectively, of both the input and the output bars. L is the gage length. A and AS are the 
cross-sectional areas of the input/output bars and specimens, respectively.  

3. Results and discussion 

Figure 2(a) shows the stress±strain curves without dialkyl peroxide and Fig. 2(b) shows the 
stress±strain curves of dialkyl peroxide addition. The 50/50/1 and 30/70/1 specimens of 
PLA/PBAT/dialkyl peroxide did not break at a strain of 0.34 under this experimental condition. 
Regardless of dialkyl peroxide addition, the maximum stress decreased and the elongation at break 
increased with increasing PBAT content. Comparing Fig. 1(a) to (b), it was concluded that the dialkyl 
peroxide addition clearly increased the elongation at break. In particular, for the PLA/PBAT ratios of 
60/40, 50/50, and 30/70, the dialkyl peroxide addition dramaticall y increased the elongation at break. 
When the PLA/PBAT ratio was 80/20, the dialkyl peroxide addition only slightly increased the 
elongation at break. Compared to the elongation at break, the dialkyl peroxide addition had less or no 
effect on the maximum stress.  

 
 
 
 
 
 
 
 
 
 
 
 

(a) Without dialkyl peroxide                                       (b) Dialkyl peroxide addition 
Figure 2  Effect of PBAT content on stress±strain curve. 

4. Conclusion 

The stress±strain curves of PLA/PBAT and PLA/PBAT/dialkyl peroxide specimens were 
measured using the tensile split Hopkinson pressure bar. When dialkyl peroxide was added, the 
elongation at break clearly increased with increasing PBAT content. The dialkyl peroxide addition 
increased the elongation at break and the areas under the stress±strain curve before the breaking point. 
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 Copper-Silver compositions are used to produce high strength, high conductor wires and 
sheets for the pulsed and resistive magnets. The specimen of 20 mm diameter is obtained from the 
continuous casting of Cu-60at%Ag eutectic alloy. The material was cold formed to a diameter 12.5 
mm and it was drawn to a diameter of 6.7 mm. In this study, Cu-Ag samples of diameter 12.5 mm 
and 6.7 mm have been taken for the microstructure evolution and  finding its mechanical behavior. 
The samples were prepared in both drawing and transverse directions. The aim of this study is to 
analyze the microstructure and modeling the nonlinear behavior of the material and its verification 
by experiment. The inspection of microstructure was done using optical microscope and scanning 
electron microscope. The lamella spacing, the thickness of Cu and Ag was investigated. The lamella 
thickness and spacing were measured to quantify the changes in microstructure for both drawing 
and transverse directions. The microscopy results shown that eutectic Cu-60at%Ag composite has a 
homogenous distribution of alternating Cu and Ag lamella layers. The mechanical properties of a 
eutectic Cu-Ag alloy were investigated at room temperature by compression tests. The material has 
high anisotropy level and its effective properties depend on lamella orientation.  From experimental 
compression tests, an attempt is made to model the material behavior using classical elasto-plastic 
nonlinear hardening law. At the end, material properties required for the assumed model are 
approximated. The results are in good agreement. 

Assumptions involved 

• The deformations are small . 

• The hardening is isotropic and can be modeled by Voce-law. 
• The plastic and hardening behavior are rate independent. 

Experimental method 

 In order to analyze the microstructure of two samples having diameter 12.5 mm and 6.7 mm, 
transverse and longitudinal sections were cut perpendicular and parallel to the rolli ng direction for 
microstructural observation. To prepare for metallographic analysis, all  samples were cold mounted, 
hand ground using 180-, 320-, 600-, 800-, 1200-grit SiC paper, hand poli shed with 3-µm diamond 
paste and given a finer polish with 1-µm in diameter, to produce a smooth surface. Specimens were 
chemicall y etched for 45 seconds in Nital (20-40% nitric acid in 80-60% ethanol) depending on the 
strain level. The microstructure was observed with a scanning electron microscope (SEM) and an 
optical microscope. 
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Results 

Figs. 1 and 2 are SEM and optical microscope images showing the microstructure of the Cu-
72 mass% Ag alloy. The porosity of Cu-72mass% Ag alloy can be appreciated in Fig. 1(a). The 
transverse section, shown in Fig.1, displays typical Cu-Ag alloy microstructural features for both 
the specimens. The darker phase is the Cu-rich solid solution, while the lighter regions are Ag-rich 
solid solutions. 

                          

Fig.1. SEM transverse images of the eutectic Cu-72mass% Ag alloy (a) undeformed specimen (  

12.5 mm) and (b) deformed specimen (  6.7 mm) 

                          

Fig.2. Optical microscope longitudinal images of the eutectic Cu-72mass% Ag alloy (a) 
undeformed specimen (  12.5 mm) and (b) deformed specimen (  6.7 mm) 

Fig.2 (a) represents the curvy lamella pattern due to shearing, the pattern continues with 
some level of alignment. For a deformed specimen shown in Fig.2 (b), the lamellae are aligned in 
the drawing direction with continuous refinement. 
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The aim of the work is to investigate the influence of moderate strains and strain rates of the 
range of 10-4

≤ε& ≤ 10-2 s-1 on the evolution of the yield limit surface. The experimental 
investigations were performed on the as received oxygen free high conductivity (OFHC) Copper. 
The specimens were machined from the commerciall y available round bars of the diameter 12mm. 
Four kinds of experimental tests were performed: tensile test for smooth round specimens and 
compression test of smooth cylinders as well  as biaxial compression test using cube specimens and 
double shear tests of cuboid specimens with machined narrow shear zones. The elaborated 
experimental data show that the investigated material reveals a slight pressure sensitivity showing 
small  strength differential effect of the order of / ~1,1C Tk kκ = ≈  and certain influence of initial 

anisotropy, which is confirmed by the investigation of texture pole figures. The effect of initial 
anisotropy manifests itself in the observed deviation from the Huber-Mises yield condition. The 
deviation was observed in the confrontation of experimental data using limit values in shear test and 
biaxial compression test.   

To find more adequate description of experimental results the Burzyński yield criterion was 
applied, [1]. The criterion is assumed for isotropic solids and the effects of initial anisotropy are 
captured by means of certain correction factor λ. The meaning of this factor can be explained by 
means of the relation between the yield limits obtained in the tensile Tk , compression Ck   and shear 

Sk  tests, respectively [1]:  

(1) ( )
23

2 1
T C

S

k k
k

λ
=

+
 . 

Observe that for ideal isotropy with symmetry of elastic range, T Ck k k= =  the factor λ is equal 0,5 

and the above relation takes form 3 Sk k=  known from the Huber-Mises condition. In general, the 

Burzyński factor λ  takes values in the range 0 1λ< <  . The yield condition for isotropic solids 
accounting for Burzyński’s correction can be expressed in the principal stress axes in the following 
form [1], and 1 2 3σ σ σ≥ ≥ : 

(2) ( )( ) ( ) ( )( ) ( )( )2 2 2

2 3 3 1 1 2 1 2 31 1 C T C Tk k k kλ σ σ λ σ σ λ σ σ σ σ σ− − + − + − − + − + + = , 

 
 The following states of stress were considered with use of the performed experimental tests: 

1. Uniaxial tension: 1 2 3, 0, 0Tkσ σ σ= = = . 

2. Uniaxial compression: 1 2 30, 0, Ckσ σ σ= = = − . 

3. Pure shear: 1 2 3, 0,S Sk kσ σ σ= = = − . 

4. Biaxial compression: 1 2 30, ,CC CCk kσ σ ν σ= = − = −   

A representation of experimental points in the plane (σeq,σm) together with yield curves of corrected 
Burzynski (1) and Huber-Mises (2) is displayed below 
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.  
Fig 1. Results of experiments and yield curves in the (σeq,σm) plane. 

 
 Another example of yield limit curves for OHFC Cu in the plane state of stress (σ1,σ3)  and 
(σ2,σ3)  for strain rate 0.001 s-1 and strain level 0.002 is presented below. 

 
Fig 2. Results of experiments and yield curves in the planes (σ1,σ3) and (σ2,σ3). 

 
It is visible that the corrected Burzyński criterion appears more adequate in comparison with the 
classical Huber-Mises condition.  
 The study of strain-rate sensitivity shows also that the yield surface increases uniformly with 
increase of strain-rate. In conclusions, the relation with the studied in the literature effect of the 
third invariant of the stress deviator (Lode angle), [3-6] is also discussed. 
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When steels which have a metastable austenitic phase are deformed plasticall y, the phase 
partially transforms to a stable martensitic phase. This phenomenon is called strain-induced 
martensitic transformation (SIMT). The steel with SIMT can be expected to increase not only its 
strength but also ductili ty and toughness because of a transition to the martensitic phase. The steel 
with these excellent mechanical properties by SIMT is called TRIP (TRansformation Induced 
Plasticity) steel [1].  

For automotive industries, a thickness of members can be decreased easier because of its 
excellent ductilit y if TRIP steel can be applied for shock absorption members. This advantage is 
connected to weight reduction of automobiles. However, transformation behevior of TRIP steel is not 
clarified. Therefore, in order to improve a reliability of TRIP steel, it is essential to clarif y the amount 
of transformed martensite which may determine such excellent characteristics of TRIP steel. 

In previous studies [2][3], the amount of transformed martensite has been measured 
quasi-staticall y during deformation by capturing impedance. Since martensite indicates a 
ferromagnetic characteristic, it can be measured continuously by impedance including inductance 
during plastic deformation. However, this experimental study have been conducted at only single 
strain rate even though a deformation behavior of TRIP steel shows strain rate sensitivi ty [4]. The 
above mentioned members is crashed at high strain rate. Therefore, it is important to discuss about the 
strain rate sensitivi ty of SIMT. In addition, the amount of martensite at various strain rates have been 
evaluated by measuring the volume resistivity [5]. Unfortunately, it can be said that this method is 
li kely to be affected by a noise and change in resistance caused by internal defects such as 
dislocations and thermal effect concerning with deformation. Thus, it is diff icult to extract the effect 
of martensite from the signals obtained by change in volume resistivity. 

In this study, it is attempted to capture the amount of transformed martensite experimentally by 
measuring continuous change in impedance during plastic deformation. A specimen made of AISI 
304, which is a kind of TRIP steel, is used for a core of a prototype solenoid coil and compressed 
quasi-staticall y inside the coil at the various strain rates. During the compressive test, two kind of 
circuits based on both alternating current potential difference method and Maxwell  bridge are 
manufactured by authors to measure continuous change in impedance. Then, comparing 
measurement value obtained by a commercial LCR meter and prototype circuits manufactured, 
validity and characteristics of both circuits manufactured will  be shown. Finall y, it will  be challenged 
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that the strain rate sensitivi ty of the change in impedance of TRIP steel will  be discussed by 
comparing the rate of the change in impedance at each strain rate. 
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1. Abstract 

Aluminum bonding is widely used in many aviation applications. In this article we investigate 
technological aspects the qualit y of bonding adherends by different surface treatment for bonding 
purposes including abrasive paper, degreasing and alodining. Moreover, each of the surface 
treatment methods are compared according  to three cure temperatures and vacuum adhesive 
melting. The finding of optimal solution for surface of adherends and adhesive preparation lead to 
significant increase of the joints strength and durabilit y.  

Helicopter factories commonly use aluminum alloys  with high strength - i.e. 2024 (Pa7 - old 
Polish Standards). The investigated material is mainly used in inner helicopter parts, transitions, 
gears, pistons, couplings etc. However, structural helicopter elements require the application of 
joining techniques, and one of each is the bonding technique.  

Collecting bonding strength results for different surface preparations, different cure 
temperature and bond preparation together gives clear base to choice adequate method for 
application. All  of the specimens has been prepared using the same condition - load during curing, 
the same bond and curing time.  

A special surface treatment method, called alodinasation, was used [1]. Alodining is a process 
in which a metal is coated with a chemical called alodine. This coating hardens the surface and 
increases bonding contact area. 

The paper presents experimental investigation of the mechanical response of Single Lap Joints 
(SLJ) taking into account the above specified technological aspects. The SJL samples, made of 
aluminum alloy 2024 T45 with tensile strength 400 - 410 MPa, were subjected to quasistatic 
uniaxial loading. The thickness of the joint parts was 2mm, whereas the bonding area was 15x15 
mm. Fracture toughness parameters GI and GII  were estimated by double cantilever beam test and 4-
point bending test, in order to estimate bonding layer properties necessary to numerical SLJ 
modeling. The whole deformation process was observed by the Digital Image Correlation (DIC) 
method (ARAMIS system). 

The obtained results lead to the conclusion that the best choice is the alodinasation technique 
both for surface preparation and for adhesive preparation by vacuum melting. All  characteristic 
parameters, li ke fracture toughness parameters, strength of the joints and the energy absorption to 
the final failure of the samples, are significantly higher in comparison to the classical technique of 
the joints production.   
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1. Introduction 

The examples of high strain rate of loading, high speed impact, high speed machining, and 
high dissipation of energy at forming processes take place in many engineering applications. In 
order to predict and control behaviour of materials used under such extreme loading conditions, the 
mechanical parameters of materials should be precisely identified. It is well  known that the 
mechanical behaviour of metal depends on the strain rate level. The Split  Hopkinson Pressure Bar 
(SHPB) or Kolsky apparatus are widely used for the investigations of mechanical properties of 
materials at high strain rates up to 1.0x103 s−1. In order to reach strain rates higher than 1.0x103 s−1, 
Dharan and Hauser (1970) [1] introduced a modification of the SHPB concept by eliminating the 
incident bar. Thus, application of the direct impact of a striker onto a small  disk or prismatic 
specimen supported by the transmitter bar enabled to reach strain rates up to 0.5x106 s−1. Such 
modification can be defined as the Direct Impact Compression Test (DICT), cf. Jia and Ramesh 
(2004) [2] or Malinowski, Klepaczko and Kowalewski (2007) [3]. 

2. Problem formulation 

Experimental and numerical investigations of the effect of strain rate on mechanical 
properties of pure tantalum are presented. Experimental studies were carried out on Direct Impact 
Compression Testing stand. Miniaturization of the experimental setup with specimen dimensions: 
diameter dS=1.5 mm and thickness lS=0.50 mm, Hopkinson transmitter bar diameter dH=3.0 mm 
and striker dI=11.5 mm and l I=12 mm, with application of a novel optical arrangement in 
measurement of striker velocity, enabled compression tests to be carried out at strain rates within 
the range from 1.0x103 s−1 to 0.5x106 s−1. Perzyna constitutive model for the elasto-viscoplastic 
material, cf. Perzyna (2011) [4], was applied to predict the dynamic compression yield strength of 
the tantalum tested at different strain rates. The formulation of the Perzyna model with Voce 
hardening law can be expressed in the following way:  
 

[ ] ( )( )[ ] )1(1 ))exp(-C-B(1(A),,( mDpp
rel

pp TT ΘΘΘΘ−⋅++= εεεεεσ &&&                          (1) 
 
where Tref is relaxation time, and A, B, C, D, and m are material parameters, Θ  denotes the 
modified temperature given by: 

0

m 0

T T

T T

−Θ =
−

      (2) 

 
where T0 is the temperature of reference and Tm is the melting temperature. 
 

The main objective of the paper was to investigate either experimentall y or numericall y a 
behaviour of tantalum using DICT technique. The special emphasis was taken on the description of 
the strain rate influence on the basic mechanical properties of pure tantalum. In order to extend the 
range of the analysed strain rates the experimental programme was supplemented by tests carried 
out on the SHPB testing stand and quasi-static hydraulic servo-controlled testing machine. 
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3. Experimental identification of the material model 

The identification of the constitutive model parameters was obtained by an inverse method. 
Numerical simulation was performed with appli cation of ABAQUS finite element program. The 
own VUMAT was implemented for calculations. The identification of constants was carried out 
using the true stress-strain diagrams. These curves were generated from the experimental tests 
performed at various strain rates. The elasto-viscoplastic model parameters were determined for 
each kind of specimen. Firstly, the computations were started assuming a broad range of the 
feasible parameters. Starting values of the model parameters were assumed and calculations carried 
out. In the next stage the final material constants were determined, and then the model was applied 
to execute numerical simulation in order to obtain final reaction force and displacement. 

Generall y, there was a good match between the experimental data and the Perzyna overstress 
model predictions for strain rates up to 0.5x106 1/s, Fig.1. 

 

 
 
Fig. 1. Comparison of the current Perzyna model (solid lines) and the experimental flow stress data 
(symbols ◊) of pure tantalum with respect to logarithmic strain rate at 296 K (results for three strain 

levels were considered, i.e. ε=0.02, 0.1 and 0.3). 
 
Acknowledgement: The research reported in this paper was partly supported by the National 
Centre for Research and Development, project No O R00 0056 07. 

4. References 

[1] Dharan C.K.H. and Hauser F.E., Determination of stress-strain characteristics at very high 
strain rates, Exp. Mech., 10, 370, 1970.  

[2] Jia D., Ramesh K.T., A rigorous assessment of the benefits of miniaturization in the Kolsky 
bar system, Exp. Mech., 44, 445, 2004 

[3] Malinowski J.Z, Klepaczko J.R., Kowalewski Z.L, Miniaturized compression test at very 
high strain rates by direct impact, Exp. Mech., 47, 451, 2007. 

[4] Perzyna P., Micromechanics of localized fracture phenomena in inelastic solids generated by 
impact-loaded adiabatic processes, Eng. Trans., 59 (4), 299, 2011. 



130 38th Solid Mechanics Conference, Warsaw, Aug. 27–31, 2012

VARIATIONS OF STRESS STATE COMPONENTS DURING STEP CYCLIC LOADING 
OF POWER PLANT STEEL 

 
 

Z.L. Kowalewski1, T. Szymczak2  
1 Institute of Fundamental Technological Research, Warsaw, Poland 

2 Motor Transport Institute, Warsaw, Poland 
 
 

1. Introduction 

The essential attempt for reduction of forces acting in the selected metal forming processes 
has been done by Korbel and Bochniak [1] who modified procedures of forging and extrusion by an 
application of cyclic torsion. Nowadays, this subject is still widely investigated by other research 
groups i.e. [2-4] since it seems to be very promising for many other possible applications.  Better 
knowledge of this subject is important for both industrial and research groups, since it may improve 
selected manufacturing processes and the numerical simulation by taking into account new effects 
observed in materials. Therefore, it was decided in this paper to investigate how the amplitude and 
frequency of torsion cycles influence the axial stress±axial strain characteristic of power 
engineering steel. A significant difference of this research in comparison to previous papers is 
related to the levels of magnitude of the cyclic strain amplitude. In all  our experiments it was less 
than 1%. 

2. Experimental procedure and results 

All tests were carried out at room temperature using thin-walled tubular mini-specimens 
(Fig. 1) made of the 10H2M steel subjected to biaxial stress state controlled by strain signals. 
Monotonic tension was combined with cyclic torsion, Fig. 2. Four blocks of cycli c torsion of 
amplitude equal to: ±0.1%, ±0.2%, ±0.4%, ±0.8% were considered.  

 

 

(a) (b) 

  
Fig. 1. Geometry and 

dimensions of mini-specimen.  
Fig. 2. Two types of loading programme comprised 

monotonic tension and: (a)  symmetric torsion cycles;  
(b) asymmetric torsion cycles.   

 
The stress responses into the strain controlled programme shown in Fig. 2 are presented in Fig. 3. 
A comparison of the conventional tensile characteristic with similar curve determined while the 
torsion cycles were applied shows a gradual decrease of the axial stress when the shear strain 
amplitude increases. It attained the level of 400 MPa what was almost equivalent to the unloaded 
state in the tensile direction for the highest strain amplitude considered, Fig. 3. Such behaviour was 
observed independently on the type of cyclic loading (symmetric and asymmetric).  
Besides of an influence of the cyclic strain amplitude on the monotonic tension, effects of cyclic 
loading frequency were also investigated at wide range of magnitudes, i.e. from 0.005Hz to 15Hz. 
Investigations were carried out for the 10H2M steel and their results are il lustrated in Fig. 4.   
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(a) 

 

(b) 

 
Fig. 3. Comparison of partial tensile characteristics determined without (0) and with assistance 

of torsion cycles for loading paths shown in: (a) Fig. 2a and (b) Fig. 2b. Numbers 1, 2, 3, 4 
correspond to strain amplitudes: ±0.1%, ±0.2%, ±0.4%, ±0.8%, respectively. 

 

(a)  (b)  
Fig. 4. An influence of frequency of torsion cycles on tensile curve of the 10H2M steel for:  

(a) strain amplitude of ±0.4% and frequency equal to: (1) - 0.005Hz, (2) - 0.05Hz, (3) - 0.5Hz;  
(b) strain amplitude of ±0.1% and frequency equal to: (1) - 1Hz, (2) - 5Hz, (3) - 15Hz. 

 
3. Conclusions 

(a) An increase of the amplitude of cyclic loading leads to gradual lowering of the axial 
stress. 

(b) Asymmetrical step-increased torsion cycles caused similar effect as that observed 
under symmetrical torsion cycles. 

(c) An influence of the frequency of torsion cycles on the tensile curve was discovered; it 
played important role especially for the magnitudes within the range from 0.005Hz to 
0.5Hz. 
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1. General

The knowledge of fracture behaviour of materials in service conditions like is required to design

structural elements and components. In mode I, this behaviour is described by fracture parameters

such as the fracture-initiation toughness, which represents the critical value of the Stress Intensity

Factor, SIF, at which a crack begins to propagate, and the dynamic fracture energy of the material,

which depends on the crack velocity.

For dynamic three-point bending (TPB) tests, special arrangements of the Split Hopkinson Pres-

sure Bar (SHPB) [1- 4] have been proposed, were the SIF can he evaluated experimentally throughout

different optical [5, 6] and photoelastic [7] techniques, but in general this require complex equipment.

Alternatively, by means of the use of high speed cameras and image-processing techniques [4], a

sequence of the Crack Mouth Opening Displacement (CMOD) evolution during the test (see figure

1(a)) was obtained. Assuming that the same relationships between SIF and CMOD used in the static

cases apply to the dynamic ones, as is demostrated in [3], the SIF was evaluated in specimens with

different initial crack-length and thickness.

Related to the dynamic crack tip evolution, in particular in polymer specimens, it has been in-

vestigated using different experimental methods, such as photoelasticity [8, 9], the method of caustics

[10, 11], or by bands [12]. In a previous work [13], authors measured the crack-propagation velocity

in PMMA specimens with different initial notch-lengths in quasi-static conditions in TPB tests. For

this purpose, using a high-speed photographic equipment, a new methodology able to analyze the

crack-propagation process in different planes of the specimen thickness was developed. During the

tests, due to the optical properties of the PMMA, the crack-front propagation was recorded using a

high-speed camera focussing the crack-propagation plane at oblique angle, as shows the figure 1. By

means of an selfmade image-processing code, the crack front and its evolution is clearly distinguished,

and the SIF history from the CMOD(t), crack-front evolution, and crack-length and crack-velocity at

different planes through the thickness at any time were provided.

Figure 1. a) Sequence of the CMOD evolution in a dynamic TPB test, b) Sequence of a crack-front propagation

in a quasiestatic TPB test

From the tests performed on PMMA specimens with different thickness and initial crack-to-

width ratios in TPB test in quasi-static and dynamic conditions, following conclusions can be drawn:
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• Fracture properties in PMMA cracked beams with different initial crack lengths and thicknesses

was measured in quasi-static and dynamic three-point-bending tests.

• The optical methodology used, provided information of the crack-initiation and propagation

process at different points through the thickness of the specimen during the test.

• The results obtained were correlated with the stored elastic energy, and compared with those

reported in case of notched-specimens [13], and by other authors for different test conditions.

• The information gained from these tests, enabled the relationship between the softening func-

tion of the material with the crack propagation speed to be determined, knowledge which is key

when using cohesive zone models to analyse these kind of materials.
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1. Introduction 

Evaluation of structural degradation and mechanical properties still  seems to be an attractive 
direction of investigations due to unsolved problems related to safety of different construction 
elements, installations or machine devices. Among many non-destructive techniques of damage 
assessments the ultrasonic method is used at different branches of industry. However, it has to be 
mentioned, that the conventional ultrasonic parameters (e.g. attenuation coeff icient, wave velocity) 
suffer on some limits in application. The attenuation coeff icient allows to detect material damage in 
a late creep stage when voids are created [1] and its application in industrial conditions is diff icult 
due to surface roughness and local material heterogeneity. In the case of wave velocity, in addition 
to the above mentioned factors also the non-uniform thickness of elements tested may disturb its 
measurements. Taking into account these facts, the acoustic birefringence was proposed [2] as the 
alternative ultrasonic parameter enabling assessments of structural degradation.  Its measurement is 
based on the wave velocity difference between two shear waves polarized in the mutuall y 
perpendicular directions [1]. Variations of the acoustic birefringence coeff icient are attributed 
to the material texture (preferred grain orientation) and even small , oriented voids resulted from 
creep [3]. According to previous investigations [2, 3] the acoustic birefringence seems to be more 
sensitive to damage development than the attenuation coeff icient and wave velocity. Among 
advantages in measurements of this parameter one can indicate a high speed, low price and 
simplicity in use at the industrial conditions. It can be measured on unknown thickness elements, its 
value is temperature independent, and measurements can be made with a single shear SH wave 
transducer.   

2. Experimental procedure 

The specimens manufactured from power engineering steels were subjected to creep under 
tensile conditions. The creep tests were interrupted for a range of the selected time periods in order 
to achieve specimens with an increasing level of strain. After each loading process the specimens 
were tested using ultrasonic technique and then the qualitative observations and quantitative 
metallographic assessment of specimens were carried out by means of light microscope (Olympus 
PMG3) coupled on-line with  image analyser (CLEMEX), (Fig. 1a,b). The quantitative image 
analysis was carried out at the same areas (6,11 mm2) of each specimen; close to the fracture (about 
0-1mm) and far away from it up to several milli metres using systematic area scanning. The 
measurements were interrupted when the differences between successive quantitative results were 
not observed. The observations of fractures by means of scanning electron microscopy (SEM - 
JEOL 6360 LA) were also carried out.  
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Fig. 1a. Specimen prestrained up to           

� = 6.51%, non-etched state, conventional 
light, magn. 200×. 

Fig. 1b. The same image, prepared to 
quantitative analysis. 

3. Results 

The representative results for the 40HNMA are presented in Figs. 2-3. 
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Fig. 2. Relationships between volume fraction 

of voids from area about 1mm from the fracture 
and acoustic birefringence. 

Fig. 3. Relationships between yield point and 
acoustic birefringence of the 40HNMA steel. 

4. Conclusions 

It is shown that the relationships between acoustic birefringence and selected destructive 
parameters (stereological and mechanical) can be determined for the 40HNMA steel. They seem to 
be applicable for elaboration of a new promising method for early stage detection of material 
degradation.  
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1. Introduction 

Aluminium alloys (AA) are characterized by a very good ratio of strength to weight which 
enforces their application in structures where weight reduction is a key factor for operational 
parameters. Typical examples are li ghtweight construction alloys used for the purposes of 
automotive and aircraft industry, what in consequence leads to the overall  vehicle weight lowering 
and finall y to reduction of the fuel consumption. The vehicle structure must fulfill  requirements of 
the occupants protection during vehicle crash. Therefore, mechanical behaviour of materials under 
dynamic loading conditions must be taken into account during designing stage. Moreover an 
intensive research has been done  to improve balli stic protection by application of AA. In the case 
of armor also an influence of strain rate on the mechanical characteristic of a material must be 
considered.     

The reliable constitutive model for the applied material should be developed and calibrated in 
order to provide an eff icient finite element method (FEM) giving an opportunity to design process 
and simulate the results captured as close as possible. For this purpose the stress-strain curves 
should be determined for various strain rates and temperatures. The usual way of material 
characterization at higher strain rates is the Hopkinson bar method, which enables strain rate 
sensitivity evaluation of materials in the range up to 5x103s-1. However, this is insuff icient in many 
cases, because local strain rates in the structure during extreme loading may overcame this value. 
En essential increase of the flow stress, which occurs in material at strain rates higher than 5x103s-1 
is caused by appearance of the drag stress component. The discrepancy between predictions of 
constitutive model developed and the experimentall y observed properties of the material may lead 
to significant errors in design procedure of the whole structure. Hence it is of great importance to 
provide the adequate testing methodology and reliable data of mechanical properties of materials 
tested at strain rates higher than 104s-1. 

2. Experimental method 

Quasi-static compression tests were performed on the standard servo-hydraulic testing 
machine (Instron), at room temperature. The dynamic compression experiments were carried out on 
both, the modified Hopkinson bar apparatus [1] at strain rate below 5x103 s-1  and the miniaturized 
direct impact compression testing stand (MDICT) [2] at strain rates within a range from 3x104 s-1 to 
1,1x105 s-1. As a results a wide picture of AA mechanical behaviour at strain rates ranging from 10-4 
s-1 to 105 s-1 was determined. The cylindrical specimens of 10mm diameter and 5 mm length were 
fabricated from extruded bars of 15 mm diameter using electro-discharging machine. The size of 
specimen for the purposes of miniaturized compression test was reduced to 1,5 mm of diameter and 
0,5 mm of length. 

3. Results 

The stress-strain curves of tested materials are presented in Fig. 1(a) for 6082-T6 alloy and 
Fig. 1(b) for 7075-T6 alloy. Both materials shows very narrow strain hardening effects which 
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occurs only at strain values lower than 0,05. Moreover, plastic strain hardening exponent doesn’ t 
change significantly with deformation rate.  

Summarized results for all  measurement techniques applied are show in Fig. 2 in the form of 
strain rate sensitivity chart. In could be seen that 6082-T6 AA doesn’ t shows any strain rate 
hardening effects below 5x103s-1, whilst  7075-T6 AA exhibits negative strain rate sensitivity value 
(dynamic strain ageing effect). At deformation rates higher than 5x103s-1 a significant increase of 
plastic flow rate, may be observed. The reason of such effect may be attributed to appearance of the 
viscous drag component of high magnitude [3] related to high velocity motion of dislocations.   

 

a)  b)  
Fig.1 Stress-strain curves of AA obtained under quasi-static and dynamic loading conditions; a) – 

AA 6082-T6; b) – AA7076-T6 

 
 

Fig.2 Strain rate sensitivity of tested AA 
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1. Introduction 

Thermal diffusivity is a material parameter describing the movement of the isothermal 
surface during the heat flow through the material.  

Thermal diffusivity characterizes a material in a complex way, because it includes the heat 
conductivity λ, specific heat cw and the mass density ρ of the material: 
 
(1) 
 
The range of thermal diffusivity values of solids is quite wide. The value depends on the chemical 
composition of the material and its internal structure.  

Pulsed infrared thermography is one of the active methods based on stimulation of the 
material surface by a heat pulse (pulse duration is equal to few milli seconds) and recording the 
material response, as a time evolution of the surface temperature distribution, by means of an IR 
camera. Such evolution contains information about thermal diffusivity of the tested material. The 
objective of the presented work is to extract this information.  

 

2. Theoretical foundations of the method 

The theoretical basis of determining thermal diffusivity of materials is based on solutions of 
heat conduction equation formulated for a plate of a finite thickness g when one of its surfaces is 
heated by a very short heat pulse. If  the surface of the plate is suff iciently large in comparison with 
the region of interest, it may be considered as infinite and then the one-dimensional model of heat 
conduction can be presumed. The differential equation of heat conduction for the one-dimensional 
model has the following form: 

 
(2) 

 
 
where: α is the thermal diffusivity, ρ is the mass density, c is the specific heat of the measured 

material and q is the function of heat sources associated with the surface density of energy sQ  
delivered to the specimen during its heat pulse stimulation. 

The solution of such problem determines the temperature as a function of time at any point 
 z ∈ [0, g]. The time evolution of temperature of the opposite surface with respect to the stimulated 
one is described by the solution for z = g. This solution includes the thermal diffusivity of the 
material of the plate. Therefore, if the temperature of this surface can be measured in time, it is 
possible to determine the thermal diffusivity of the tested material. 
Assuming relatively simple, initial and boundary conditions: 
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where To is initial temperature, T∞ is maximum temperature.  
The logarithm of Eq. (4) has a linear character: 
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and the tangent of the slope straight line to the time line: 

(6) 

 
Then, if one of the specimen surfaces will  be heated by a short impulse of heat and the temperature 
of the opposite surface will  be measured as a function of time, we can determine the thermal 
diffusivity α from Eq. (6). 

3. Experimental procedure and results 

The measuring system for determining the thermal diffusivity of the tested material is 
presented in Fig. 1. 

 

 

 

 

 
 

Fig. 1. The scheme of the measuring systems for determining the diffusivity of solids. 1 - specimen, 
2 – flash lamp, 3- power supply, 4 – IR camera, 5 - computer with appropriate software to enable 
recording thermal images of the specimen surface, as functions of time. 

 
After some simple transformations from the obtained relation, we can draw a straight line 

and obtain its tangent of the slope straight line to the time line.  
 Substituting to (6) the value of the tangent and thickness of the specimen, we obtain the 
thermal diffusivity of the sample.  

The experiments were performed on austenitic steel 316L. The determined value of the 
thermal diffusivity of this material is 63.65 10−⋅  m2/s, whereas the value given in the literature [1] is 

63.71 10−⋅  m2/s.  
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1. Introduction 

When a material deforms plasticall y, a part of the mechanical energy pw  expended on 

plastic deformation is converted into heat dq  while the remainder se  is stored within the material.  

(1)  s p de w q .= −  
The measure of energy conversion at each instant of plastic deformation process is the rate of 

energy storage Z  defined as the ratio of the stored energy increment to the plastic work increment; 
/ .s pZ e w= ∆ ∆  The stored energy increment is equal to difference between pw∆  and the increment 

of energy dissipated as a heat dq∆  (see Eq (1)), .s p de w q∆ = ∆ − ∆  Then: 

(2)  / 1 / .s p d pZ e w q w= ∆ ∆ = − ∆ ∆  

In the previous works by Oli feruk and co-workers it has been shown that during non-uniform 
deformation (localization of plastic strain) of polycrystalli ne material, the energy storage rate 
rapidly decreases reaching the 0 value and then becomes negative [1,2]. The 0 value of the energy 
storage rate means that the deformed material losing the abilit y to store the energy. But the energy 
storage rate was determined as the average value for the total gauge part (25 mm) of specimen. The 
estimation of /s pe w∆ ∆  was based on the comparison of the temperature increment of deformed 

specimen related to the given increment of the expended energy during uniform deformation with 
the average temperature increment during non-uniform one. The question appears: What is the 
energy storage rate distribution along the gauge length of the strained specimen during development 
of plastic strain localization? The purpose of the presented work is to answer this question. 

2. Experiments 

A new method of determination the distribution of energy storage rate is proposed. The 
method is based on the experimental procedure for the simultaneous measurements of temperature 
and displacement distributions on the surface of tested specimen during tensile deformation. This 
procedure involves two complementary imaging techniques: CCD technique in visible range and 
infrared thermography (IRT). In order to determine the strain distribution, markers in form of 
graphite dots were plotted on one surface of the specimen. In this way, the surface was divided into 
sections, whose sizes are determined by the distance between centers of dots (Fig. 1).  

 

Fig. 1. The graphite dots on the gauge part of specimen. 

Displacements of the dots were recorded by means of CCD camera during deformation process. 
The local true strain was obtained by taking the logarithm of the ratio of the current distance 
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between graphite dots to initial one. The true stress was calculated by dividing the load by the 
current cross-sectional area of the specimen corresponding to given section. The strain and stress 
distributions were used to calculate surface distribution of plastic work. 

Temperature distribution on the opposite surface of the specimen was measured by means of 
IR Thermographic System. The surface was covered by soot, to ensure its high and homogeneous 
emissivity. From the surface temperature distribution, the distribution of energy dissipated as a heat 
was determined using local form of heat equation. Dependences of this energy on plastic work for 
local sections of deformed specimen allow to calculate /d pq w∆ ∆  and then to obtain from Eq. (2) 

the energy storage rate. 
The experiments were performed on specimens cut out from a sheet of austenitic steel. 

3. Results 

The local values of the energy storage rate as a function of plastic work was determined. Such 
dependences for selected sections lying on the axis of deformed specimen are presented in Fig. 2. 

 

Fig. 2. The energy storage rate as a function of plastic work for selected sections 
lying on the axis of the specimen. 

The obtained results shown that the energy storage rate for all  tested sections decreases with 
strain. During evolution of plastic strain localization some sections cease to deform, while the 
energy storage rate in the others drops to zero and even to negative values.To identify micro-
mechanisms corresponding to appearance and evolution of plastic strain localization microstructural 
characterization was performed by electron backscattered diffraction (EBSD) and transmission 
electron microscopy (TEM). 
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1. Introduction 

Technical objects repairs are more and more often taking advantage of structural bonding [1] 
[2], as well  as, quick chemicall y setting materials; so-called, adhesive composites, which create new 
possibiliti es in the scope of expedient or permanent removal of different types of damages [3]. 
However, the adhesive materials are characterised with relatively low durabilit y. These materials 
are very sensitive to repair’s conditions, as well  as, they have got limited shear and long-term 
strength; that is, an abilit y to transfer constant loads in time, and limited  fatigue li fe – an abilit y to 
transfer changing loads [7]. Without famili arity with these properties, the application of adhesive 
materials in repairs is burdened with the risk of damage to a repaired element in a relatively short 
time after the performed repair.  

2. Methodology and results of research 

Currently, a wide range of specialist adhesive composites of different purposes is produced. 
However, the best groups for milit ary purposes seems to be “super metals” , designed mainly for 
reconstructing losses of metal parts and „ rapid”  group characterized by a short time of setting. 
Therefore, the main object of research are well -known and available in the Polish market adhesive 
composites of Belzona, Unirep and Chester Metal.  

Application of adhesive materials to repairs requires; among others, determining their 
durabilit y, which is broadly understood as a material abilit y to transfer long-lasting static load 
(static long-lasting strength) and their durabilit y to changing load (fatigue li fe). Since that 
information are not provided by manufacturers, the main aim of the work is to determine the 
mentioned features of selected adhesive composites. 

Firstly, creep curves for the selected adhesive composites were determined (Fig. 1). In order 
to define an influence of curing conditions of adhesive composites on their long term strength, the 
curing was carried out by single-stage (in room temperature) and by double-stage (in increased 
temperature). 

 

 
Fig. 1. Creep curves of the adhesive composites  
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In order to determine durabilit y of lap joints made with adhesive composites, experimental 
research was conducted, which was preceded by defining their immediate strength on which basis 
the loads for long-term research were selected. The measure of durabilit y of lap joints was a lapse 
of time between the commencement of research and specimen destruction (Fig. 2). 

 

 
Fig. 2. Static long-term strength of lap joints made of the adhesive composites 

 
Furthermore, the discussed materials were subject to a fatigue li fe test in cylinder and lap 

joints (Fig. 3).  
 

 

Fig. 3. Comparison of absolute shear fatigue li fe of researched adhesive composites 

4. Conclusion 

With regard to requirements of expedient repairs executed in field conditions, the long term 
strength of adhesive joints higher than 50 hours and fatigue strength of adhesive joints higher than 
100 000 cycles can be accepted as suff icient in most of the cases. Therefore, safe value of 
maximum long-lasting and fatigue loads of researched adhesive composites that ensures the 
required durabilit y of joints made of these composites, should be of 0,5 of breaking load in a static 
test of short term strength. 
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Model 200XY serves the purpose of measuring the necking on material samples (specimens) 

during high-speed tension tests. Over a sample height of Y the instrument contactlessly measures 
20000 times per second the width of the specimen.  

For recording, the following calibrated measuring signals are available at the outputs of the 
instrument: 
 
 

Edge positions: X1 and X2 

 

Width of specimen: W = X1 - X2                                    

 

Minimal width of specimen: Wmin 

 
Sample height to be scanned: Y 

 
 
 
 

Width W of the specimen is measured with a resolution 2 ± 25 µm (adjustment of low-pass 
filter). Per scan the smallest sample width (Wmin) is calculated, stored, and delivered as measuring 
value/scan).  

The measuring range (M) of the instrument depends on the lens unit used. The lens unit can 
be exchanged. In case the standard version of Model 200XY is used, an LED il luminator has to be 
placed behind the specimen.  

Through a window in a test chamber there is the possibility of measuring necking on samples 
in it; these samples can be hot up to 2500°C. 

 For our website please contact: www.rudolph-optics.com 
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1. Introduction 

Metal matrix composites (MMCs) belong to ceramic reinforced materials that mechanical 
properties should be enhanced in comparison to the matrix [1, 2]. Moreover, the composites are to 
be used in aerospace and automotive industries where li ght and simultaneously durable materials 
are required. One of the advantages of MMCs is that they can be produced using methods similar to 
those used for the monolithic materials. Hence, the KoBo method was used to manufacture 
AlMg/SiC MMCs [3]. Mechanical tests and microstructural observations were carried out to 
investigate damage process under fatigue and creep conditions [4].  

2. Materials 

The Al7,9Mg powder of 99,7% purity and the SiC powder of 99,8% purity were used during 
MMCs production; an average particle size were equal to 14,6 µm and 0,42 µm, respectively. 
Powders were blended, pressed  and extruded in the form of rods using the KoBo 100T horizontal 
hydraulic press. The SiC content was equal to 0; 2,5; 5; 7,5 and 10%. 

3. Details of experimental procedure 

Fatigue tension-compression tests were performed under stress control at ambient 
temperature. Stress amplitudes were equal to 220 and 240 MPa. Sine shape cycles (R=-1) were 
applied with the frequency of 20 Hz. Hysteresis loops during subsequent cycles were captured.  

Step increasing tensile creep tests were carried out at 200°C. Three levels of stress equal to 
40, 60 and 70 MPa were applied. Creep curves were elaborated. 

Microstructural observations using optical light microscopy and scanning electron microscopy 
were performed before and after fatigue and creep tests. An influence of reinforcement content as 
well  as  an influence of fatigue and creep processes on material degradation were analyzed.   

4. Synthesis of experimental results obtained 

Representative fatigue and creep results in a form of the hysteresis loops and creep curves, 
respectively, are presented in Figs 1 and 2. Microscopic patterns of fracture surfaces are also shown 
in these figures. Cyclic softening followed by decreasing of inelastic strain amplitude were 
observed during subsequent cycles. The effect was indentified for higher stress amplitude 
(240 MPa). Moreover, it was stronger for lower content of SiC particles. In most cases, higher SiC 
content resulted in lower cycli c softening. Unfortunately, shorter li fetimes with increasing SiC 
content were obtained. Creep parameters become more favorable if the SiC content did not exceed 
5%. Above this value they decreased. It is worth to notice that creep resistance was higher for 
reinforced materials in comparison to the matrix.  

Microstructural observations showed existence of discontinuities before and after mechanical 
tests. The volumetric fraction of defects increased with an increase of reinforcement content. 
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a)       b) 

 
Fig. 1. AlMg+10%SiC: (a) fatigue test results in the form of hysteresis loops after 100 cycles; 

(b) fracture surface (SEM, magn. x500)  
 

a)       b) 

 
Fig. 2. AlMg+10%SiC: (a) creep test results in the form of creep curve; 

(b) fracture surface (SEM, magn. x500) 
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1. General

The presentation covers an important question of yield criteria for cellulars. It is crucial to be

able to foresee material’s failure behaviour before its use in practical applications. A variety of failure

criteria is available, though not all of them are verified experimentally, which may have consequences

in terms of their potential use.

Because of diversity of structure of foams as well as materials of which they are made of it

is very difficult to construct a unified approach of assessment of material effort in those cellulars.

Another problem might be to include all foam characteristics at once, like: open vs closed cells or all

different failure component mechanisms in cells.

Historically first yield criteria were based on idealised cell failure behaviour, that is on uniaxial

tensile/compressive response of ribs in a cubic cell. Naturally, such approach had to be developed in

order to cover at least orthotropy, not to mention lower symmetries. Moreover, other mechanisms in

cells, which lead to collapse, had to be taken into account: first bending of ribs, then plastic hinges,

which arise in vertices leading to rotation, also buckling in compressive situations. Plastic and brittle

response of foam skeleton had to be identified and included in criteria.

The most well-known criterion based on theoretical assumptions of cell structure and collapse

mechanisms is the classic yield criterion for ideal foams proposed by Gibson’s et al. There are also

couple of phenomenological criteria that can be simplified under special assumptions to that of Gib-

son, including Millers’ yield criterion for foams with plastic compressibility and Desphande and

Fleck’s phenomenological criterion for metal foams. There are many other ideas published in the

subject literature over recent years on how to assess material effort in foams. Most interesting theo-

ries include statistical approach or purely empirical criteria. On the other hand, factors like different

yield strength in tension and compression (SDE effect) and its consideration within the theory behind

a given criterion is also crucial.

The presentation covers a range of existing criteria for foams, including giving their origin and

interconnections, if any. For those criteria which have been studied in terms of experimental validation

the results are cited. Some criteria meet experimental results with good agreement; however, there are

always some factors which need to be accounted for. These include mostly testing techniques, which

are very specific as for cellular materials. Conclusions summing convergence between theoretical

provisions and tests are given. Suggestions in terms of calibration of both test methods and criteria

are also presented.

Moreover, not all criteria use the same quantitative material strength results - some use values

determined in different tests; this of course makes it an ambitious aim to compare between the criteria.

It is worth mentioning that though difficult such comparison leads to choosing the best criterion for

a given application. One of the objectives of this presentation is to chose potentially best criterion to

assess material effort of a new class of materials: auxetic foams.
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1. Introduction 

Cryogenic stand for uniaxial tensile testing of ductile materials at ultra-low temperatures is 
located in Faculty of Mechanical Engineering at the Cracow University of Technology (Fig.1). The 
main tensile test aim is to identify constitutive model parameters of materials (e.g., 304L, 316L, 
316LN, 316Ti stainless steel, Cu-OFE, etc.) which are used at ultra-low temperature. During tensile 
test DAQ systems record: force applied to a specimen, temperature of a specimen surface and 
elongation of a specimen. 

 

Figure 1. University experimental cryogenic stand for uniaxial tensile test at ultra-low temperature 

For ductile materials applied at very low temperatures (in particular at liquid helium temperature–
4,2 K) and for suff iciently high strain rate discontinuous plastic flow (serrated yielding) is observed. 
The main feature of serrated yielding consists in frequent abrupt drops of stress as a function of 
strain during monotonic loading. Reasons and constitutive model of discontinuous plastic flow 
phenomenon are described by Skocze� [1], [2]. 

 
Figure 2. Stress-strain curve for Niobium - Ti6Al4V specimen. a) tensile test at room temperature, 

b) tensile test at liquid helium temperature, c) extensometers vibrations effect 

In order to perform correct data logging of discontinuous plastic flow should be prepare qualit y 
optimization process of strain measurement path.  
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2. Experimental results 

 Dynamic character of discontinues plastic flow phenomenon generates vibrations of dual 
extensometers-specimen structure, influencing appropriate plotting of strain–stress curve  
(Figure 2c.). 

 
Figure 3. Determination of "dual extensometers-specimen structure" natural frequency, forces 
during cryogenic tensile test of JK2LB specimen. a) strain and stress in time domain, b) strain 

without trend, c) frequency spectrum of dual extensometers 

In order to verify, if strain oscill ations on stress-strain curve are generated by vibrations of dual 
extensometers-specimen structure, in the Dynamic of Material System Laboratory at Cracow 
University of Technology was created special measurement path (Figure 4.) 

 
Figure 4. Special measurement path to verify of extensometer-specimen structure natural frequency 

Tests on special measurement path shown that natural frequency of structure is 126 Hz. 
 
 Currently, is created model of all  phenomena occurring on test faciliti es and measurement 
system during tensile test at ultra-low temperature. Preparation of advanced model will  be crucial 
for optimization process. 
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1. General 

Despite the number of works devoted to the three-dimensional analysis of the static and 
dynamic behaviour of cracked solids ([1, 2], among others), showing the important difference 
existing between the 3D and 2D cases and the consequences arising from the proper consideration 
of the through-thickness stress and strain fields in a finite thickness cracked plate, engineering 
applications, in general, obviate these facts, and accept the simplicity of the 2D analysis.  

In previous works ([3, 4]) a tensor description has been introduced to characterize the singular 
stress field in the vicinity of the crack front in accordance to the Willi ams’  series expansion. In 
these studies, it is concluded that the existence of second order terms cannot be, in general, 
neglected. In addition to the in-plane T-stress often considered in 2D problems, the out-of-plane 
component of the so-called constraint tensor tij plays an important role in the constraint due to the 
thickness effect. 

From the numerical analysis, performed by FEM, of cracked plates with different thickness B 
and crack depth ratios a/W, subjected to a uniform stress σ applied on the top side of the plate (see 
Fig. 1) [5, 6], the following conclusions on the three-dimensional effects can be drawn [4, 5]:  
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Figure 1. Geometric model of the cracked plates. 
 

1. The presence of singular in-plane stress fields together with the requirement of bounded out-
of-plane strain along the crack front promotes the existence of a singular out-of-plane 
normal stress at the crack front, irrespective of the specimen thickness. It proves the 
impossibilit y of existence of a plane stress state at the crack front, within the LEFM scope, 
for any specimen type under mode I loading when the specimen thickness tends to zero.  

2. In three-dimensional situations, as those present in real cracked specimens of finite 
thickness, the classical 2D J-integral is not strictly applicable because the actual out-of-
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plane stress and strain fields are ignored. The usual consideration of an equivalent Young’s 
modulus E´(depending on constraint conditions) to find a simple relation between the J3D-
integral and KI for different constraint levels (see [7]; for instance) is misleading. The only 

valid relationship between J3D-integral and KI is ( )
2

2
3 1 I
D

KJ Eν= − , independently of the 

specimen thickness. 
3. While in the calculation of KI in 2D problems the geometric factors used only depend on the 

in-plane dimensions, a proper three-dimensional geometrical factor related also on the 
specimen thickness, B should be included.  

4. From the analysis of the second order term (constant) of the Willi ams expansion, (i.e. 
constraint tensor tij), it can be concluded that the out-of-plane component t33 plays an 
important role (similarly to the in-plane component t11, the so-called T-stress in biparametric 
approaches for plane problems), explaining the loss of constraint phenomena. Since the 
apparent fracture toughness increases for decreasing thicknesses B, for a given crack length 
a, due to the loss of constraint as compared to the constraint existing in a thick plate, it 
follows the necessity of considering the whole constraint tensor (in particular t11 and t33 
together) in order to explain this experimental fact. 

 

The above findings correspond to static conditions, though numerical results of three-
dimensional simulations of dynamic three-point-bending fracture tests performed on a modified 
Hopkinson Split  Pressure Bar [8] are also presented. The 3D model proposed includes the whole 
experimental device. In the dynamic simulation, specimens with different thickness and crack 
lengths tested with two impact velocities (5 m/s and 10 m/s) were considered. These results also 
point out the importance of three-dimensional effects on the determination of the dynamic fracture 
toughness of materials. 
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A main objective of the present paper is the development of the thermodynamical theory of 
elasto-viscoplasticity as a unique material constitutive structure within the framework of a general 
covariant deterministic theory. The focus of attention on the description of the influence of 
anisotropy effects on fracture phenomena as well  as on multiscale considerations in the analysis of 
the physical foundations and experimental motivations is proposed. Experiment precisely suggests 
that for proper description of the thermomechanical couplings we have to base our considerations 
on thermodynamics. 

1. Kinematics of finite deformation and fundamental definitions  

The description of kinematics of finite deformation and the stress tensor of the continuum 
medium is presented. The fundamental measures of total deformation are introduced. The 
description is based on notions of the Riemannien space on manifolds and the tangent space. A 
multiplicative decomposition of the deformation gradient is adopted. The decomposition of the 
strain tensor into the elastic and viscoplastic parts is presented. The Lie derivative is used to define 
all  objective rates for the introduced vectors and tensors. The rates of the deformation tensor and the 
stress tensor are precisely defined. 

2. General principle of determinism. A unique constitutive material structure 

The original conception of the intrinsic state of a particle X during motion of a body B has 
been assumed. A notion of the method of preparation of the deformation-temperature configuration 
of a particle X has been proposed as simple way of the gathering information for the description of 
the internal dissipation. A general principle of determinism for thermodynamical processes has been 
formulated. The topology for the intrinsic state space and some smoothness assumptions for 
processes and response functions (functionals) are postulated. As the basis of the thermodynamic 
requirements the dissipation principle in the form of the Clausius-Duhem, inequalit y is assumed. 
The dissipation principle implies two fundamental criteria, namely the criterion of the selection of 
the response functions (functionals) and the criterion of the accessibilit y of the intrinsic states. The 
principle of the increase of entropy has also been deduced. These results have a great importance to 
the thermodynamical theory of inelastic materials. 

3. Internal state variable material structure 

Assuming that the method of preparation space for a unique constitutive material structure is a 
finite dimensional vector space and postulating that the initial value problem for the element of the 
method of preparation space has unique solutions we construct the material structure with internal 
state variables. The rate of internal dissipation function for the internal state variable material 
structure is obtained. From this results we can directly observed that full  information given in the 
method of preparation at the actual intrinsic state essentiall y determines the rate of internal 
dissipation for this intrinsic state. This conclusion is of fundamental importance for the physical 
interpretation of the internal state variables. 
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4. Thermodynamical theory of elasto-viscoplasticity 

The main purpose is to develop the thermodynamical theory of elasto-viscoplasticity within 
the internal state variable material structure and to take into account the influence of anisotropy 
effects on fracture phenomena as well  as the observed contribution to strain rate effects generated 
by microshear banding. Thus the problem is to deduce and interpret a finite set of the internal state 
variables basing on multiscale considerations in analysis of the physical foundations of inelastic 
solids and experimental observation results. 

Experimental  observation concerning investigation of dynamic loading processes have shown 
that formation of microshear bands influences the evolution of microstructure of material. We can 
conclude that microshear banding contributes to viscoplastic strain rate effects. For the elastic-
viscoplastic model of polycrystalli ne solids the relaxation time Tm governs the viscoplastic flow in 
the entire range of strain rate changes and has to be a function of the rate of equivalent inelastic 
deformation ∈& p and the active microshear bands fraction fms. On the other hand analysis of recent 
experimental observation concerning investigations of fracture phenomena under dynamic loading 
processes suggests that there are two kinds of induced anisotropy: (i) the first caused by the residual 
type stress produced by the heterogeneous nature of the finite plastic deformation in polycrystalli ne 
solids; (ii ) the second the fracture induced anisotropy generated by the microdamage mechanism. It 
is noteworthy to stress that both these induced anisotropy effects are coupled. Multiscale 
considerations in the analysis of the physical foundations of inelastic solids and experimental 
observation results suggest that a material of an investigatived body B is a dispersive and dissipative 
medium. In a dispersive medium any initial disturbance is broken up into a system of wave groups. 
Then the energy is propagated to the particular nucleated microcrack with the appropriate group 
velocity. Thus, each of nucleated microcracks will  receive different portion of energy distributed by 
various group velocities. This important fact observed leads to the fundamental conclusion that the 
evolution of microdamage has anisotropic nature. As the result of this multiscale analysis we have 
very crucial suggestions concerning the constitutive description: 

(i) Since a material of a body B (for various metals li ke nickel, copper, aluminium, lead and mild 
steel) is a dispersive and dissipative medium, then it can be modelled as an elastic-
viscoplastic. 

(ii ) Since the dispersive effects for propagation of wave phenomena play so important role, then 
we have very heterogeneous deformation processes which lead to the residual type stresses 
and generate the strain induced anisotropy. Experimental evidence indicates that yield surface 
exhibit anisotropic hardening. Subsequent yield surfaces are both translated and deformed in 
stress space. 

(iii ) The anisotropy of intrinsic microdamage mechanisms observed experimentall y and discussed 
on the basis of multiscale considerations is very fundamental for the proper description of 
fracture phenomena. 

We have good foundations to suggest a finite set of the internal state variables. We propose to 
assume as the internal state variables: the equivalent viscoplastic deformation ∈P, which will  
describe inelastic flow phenomena, the microdamage second order tensor ξ with the physical 
interpretation that (ξ : ξ)1/2 = ξ defines the volume fraction porosity, to take account for the 
anisotropic microdamage  mechanisms, and the back stress (residual stress) αααα, which will  model the 
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kinematic hardening intrinsic mechanisms as an approximate description of the strain induced 
anisotropy. 

Particular attention is focused on the determination of the evolution laws for the internal state 
variables introduced. The fundamental viscoplastic law for the rate of spatial deformation tensor is 
assumed to be proportional to the empirical overstress function. To describe suitably the influence 
of the both induced anisotropy effects and the stress triaxialit y observed experimentall y the new 
evolution equations for the microdamage tensor ξ and for the back stress tensor αααα are proposed. 

The fundamental rate type constitutive equations for the Kirchhoff  stress τ and for temperature 
ϑ are formulated. Thermomechanical couplings are investigated. Fracture criterion based on the 
evolution of the anisotropic intrinsic microdamage is proposed. The fundamental features of the 
proposed constitutive theory have been carefull y discussed. 

The propose of the development of this theory is in future applications for the description of 
important problems in modern manufacturing processes, and particularly for meso-, micro-, and 
nano-mechanical issues. 
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1. Context 

Environmental constraints lead major mechanical industries to reduce the weight of the 
structures. This objective can be achieved by using new materials, such as high strength steels or 
advanced alloys, but new unexpected diffuse and localized necking modes may then occur, leading 
to defective products during sheet metal forming. Prediction of material instabilit y become again a 
major industrial challenge and an academic subject of interest to understand the physical 
phenomena leading to necking and to determine the most appropriate dimensioning methods. A 
review of four theoretical principle commonly used to predict the occurrence of necking lighten 
their abilit y to take into account the physics of necking or their limits to be coupled with advanced 
material modeling. 

2. Prediction of formability 

A first approach to determine the formabilit y limits is based on the existence of multiple 
heterogeneous areas in the sheet. According to Marciniak-Kuczynski [1], a band of reduced 
thickness in which necking is expected is arbitraril y introduced in a safe media. The comparison of 
the evolution of the mechanical properties inside and outside the defect area allows the prediction of 
localization. M-K model is applicable to a wide range of materials. A limitation of this criterion 
comes from the requirement of user defined parameters, as for example the initial defect size or the 
threshold value. An other analytical method, the Maximum Force Principle (MFP), is based on an 
empirical observation according to which diffuse necking occurs when the load reaches its 
maximum during a uniaxiale tensile test. Extensions to this criterion have been proposed to predict 
diffuse necking [2] and latter localized necking [3] of metal sheets submitted to biaxial loadings. 
Although some interesting trends are found by comparing experimental and numerical results 
obtained with these criteria, their theoretical bases still  have to be reinforced to take into account 
advanced material modeling. To overcome these limitations some relations with the bifurcation 
analysis criteria can be investigated [4]. According to the bifurcation approach, a necessary 
condition for diffuse necking is given by the loss of positivity of the second order work [5]. For 
localized modes, the loss of elli pticity criterion was established to predict necking or shear banding 
[6]. This criterion is however restricted to both rate independent materials and softening behavior 
for associative plasticity. This first restriction can lead to unrealistic and too restrictive formabilit y 
predictions for rate dependant materials. In such case, stabilit y analysis by a linear perturbation 
method may be used to improve the forming limit diagram predictions. Necking and localization are 
seen as instabilit y of the global or local mechanical equili brium [7].  

3. Linear stability method  

Recent methods based on the material stabilit y analysis allow the prediction of multiple 
necking of plates and hemispherical shells subjected to dynamic expansion for viscoplastic 
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materials at high strain rates [8] or the prediction of localization in elasto-plastic soil  media [9]. In 
this work, an original method is developed to take into account a large class of phenomenological 
elasto-viscoplastic modeling.  

A general modeling framework is considered here to introduce various classical isotropic and 
kinematic hardening models and to take into account the effects of anisotropy and damage. As 
softening effects are shown necessary to predict localized modes with Rice criterion, this effect is 
introduced here by taking into account damage. After introduction of a small  perturbation in the 
equili brium equations and linearization of the system, stress perturbation and strain perturbation are 
then related by an elasto-viscoplastic operator. Stabilit y of linear system is investigated by the 
evaluation of the evolution of the growth rate of the introduced perturbation. In accordance with 
previous theoretical observations [10], formabilit y predictions proposed with this instabilit y 
criterion tend to those obtained with bifurcation analysis when elasto-viscoplastic material behavior 
tends to the elasto-plastic case. 

4. Conclusions 

To overcome limitations observed on different categories of necking and localization criteria, as 
for example the impossibilit y to take into account the effects of strain rate and their influence on 
formabilit y, a method based on linear stabilit y analysis is proposed. The original criterion obtained 
for elasto-viscoplastic materials is compared with the criterion based on the bifurcation analysis. 
The originalit y of the approach used here is to present stabilit y conditions of metalli c materials 
modeled by general phenomenological laws. 
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1. Introduction

The contribution presents a solution to a 2D delamination problem of an infinite elastic film

resting on a rigid substrate and loaded by a monotonically increasing in-plane point force. The prob-

lem can be encountered in many practical applications, for example fiber reinforced polymer sheets

used in structural strengthening techniques [1] or in laminated glass, where two or more glass plies

are bonded together by a polymeric interlayer through treatment at high temperature and pressure in

autoclave [2].

2. Problem formulation

Let us consider an infinite elastic film of thickness h resting on an infinite rigid foundation. The

film is subjected to a monotonically increasing point load P acting in the plane xy on its upper surface,

as presented in Fig. 1(a). By assuming rigid-slip interaction between the film and the substrate we

have two zones developed at the interface, namely Ω, where the film is displaced due to the external

loading P , and Σ where the structure remains fully bonded with vanishing film displacements. Let ∂Ω
denote the delamination front between the regions Ω and Σ, as schematically presented in Fig. 1(b).

Assuming the film thickness h to be small as compared to 2l, being the characteristic length of the

delaminated zone Ω, the problem can be treated as two dimensional with the film in plane stress

conditions. The interaction between the film and the substrate is reduced to shear traction τ
f treated

as in-plane body forces acting on the film. Magnitude of traction τ
f reaches the critical value |τ f | =

τ f = const within the delaminated zone Ω. Due to their continuity, there are neither traction nor

displacements on the boundary ∂Ω.

3. Superposition of solution

Due to the fact that the film is assumed to remain elastic during the delamination process, the

displacements and the stresses within the film are the superposition of respectively displacements and

stresses induced by both the point load P and the forces at the interface. There are zero tractions and
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Figure 1. (a) Infinite elastic film resting on a rigid substrate. In-plane point loading. (b) Two dimensional

model: plane stress conditions with interfacial traction τ
f treated as in-plane body forces.
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Figure 2. Distribution of stresses in the plate within one quadrant of the delaminated zone Ω (x ≥ 0, y ≥ 0)

obtained for ν = 0.3. Dashed line indicates the moving boundary.

displacements at the moving boundary ∂Ω and we can write

(1) ui(x) = uP

i (x) + uτ f

i (x), σij(x) = σP

ij(x) + στ f

ij (x),

where

uP

i (x) = P ũx
i (x;0), σP

ij(x) = P σ̃x
ij(x;0),

(2) uτ f

i (x) =

∫∫

Ω

[

τ f

x(X) ũx
i (x; X) + τ f

y(X) ũ
y

i (x; X)
]

dΩ,

στ f

ij (x) =

∫∫

Ω

[

τ f

x(X) σ̃x
ij(x; X) + τ f

y(X) σ̃
y

ij(x; X)
]

dΩ.

With j being either x or y, the functions ũ
j(x; X) and σ̃

j(x; X) in equations (2) are respectively

plane stress displacements and stresses at point x resulting from a unit force imposed at point X of

an infinite plate of given thickness h and acting in the j direction.

To effectively make use of Eqs. (2) we have to determine two unknowns, namely the distribution

of the shear forces at the interface, that is the angle θ in Fig. 1(b), and the shape of the delaminated

zone Ω. Making use of problem’s self-similarity, an approximate procedure providing these two

functions will be presented.

4. Results

Due to the complexity of the integrands the integration in (1) can be done only numerically. For

ν = −1 the integrals in (1) simplify and one obtains an exact analytical solution. For this special case

the stresses within the delaminated zone have the simple form

σxx = −σyy =
τ f(r2 − l2

0
) cos ϕ

2hr
, σxy =

τ f(r2 − l2
0
) sin ϕ

2hr
.

It will be argued that this is a particular situation of a rigid film delaminating from a rigid substrate.

Figure 2 presents one quadrant of the slip zone and contour stress fields obtained for Poisson’s

ratio ν = 0.3. The components σP

ij in Eqs. (1) introduce the singular behaviour of the stress field in the

point O, where the concentrated force is imposed. Due to the approximate character of the solution

the boundary condition σ = 0 is not exactly satisfied, which is clearly seen for stress component σyy.
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1. Aim, scope and object of research  

The aim of the research was to demonstrate possibiliti es of using measurements of value of 
magnetic properties characteristic for cast steel LII500 material to evaluate the degree of its fatigue 
degradation, as exempli fied by drive wheel of EU07 locomotive [1, 2]. The scope of the research 
has covered both magnetic properties of real object i.e. locomotive drive wheel and laboratory 
research of magnetic properties of samples of wheel material. The object of the research has been 
the drive wheel which has been taken out of operation due to cracks on its disc (Fig.1a). The 
occurrence of the cracks has been noticed during the general overhaul of the locomotive drive 
system which was carried at the Zakłady Naprawcze Lokomotyw Elektrycznych in Gliwice. They 
have been detected by a dye penetration method (Fig.1a). Samples of wheel material taken from the 
areas of lesser and greater degree of fatigue degradation have also been laboratory tested as far as 
their magnetic properties were concerned.  

 

a.    b.  
Rys.1. a. Drive wheel of EU07 locomotive with a marked location of a crack  

b. net of measurement points on the inner surface of the wheel  
 

2. Measurements of magnetic properties value of a real object  

Measurements of dynamic loop of magnetic hysteresis in selected measuring points have been 
made on both inner and outer surface of the wheel disc. The method of measurement has been based 
on the value of magnetic induction in an air fissure of magnetic system, where the yoke with 
winding magnetize the material under research. Hall  sensor has been used for the measurement of 
magnetic induction (expressed as value of electric voltage). The studied material served as a keeper 
in magnetic set, which has been limited to the area of the rail  wheel disc. The recorded lines of 
input and output voltage of a probe allowed determination of dynamic loops of magnetic hysteresis 

��������	��
�����
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in coordinating set of input voltage- output voltage of a probe. The value of input voltage of the 
probe was proportional to the value of coercion intensity, whereas the value of output voltage was 
proportional to the maximum value of the vector of magnetic induction. Colorful maps of the 
distribution of the voltages on the inner surface of the wheel disc have been selected (i.e. the surface 
where by means of dye penetration the cracks have been identified) [3]. 

There have been also made measurements by means of Foerster’s probe and as a result a 
colorful map with the distribution of parameter (expressed in voltage units), describing the change 
in inductivity of the probe depending on the location on the inner surface of the wheel disc, has 
been produced (Fig.2a) [4]. 
 

a.  b.  
Fig.2. a. Colorful map of parameter distribution describing the change in inductivity of measuring 

probe, depending on the location of the measurement on the inner surface of the wheel disc 
b. curves of the primary magnetizing of material samples. 

 

3. Laboratory research on magnetic and mechanical properties of material samples  

Laboratory research has been carried on material samples of a wheel from the areas of greater 
and lesser degree of fatigue degradation. The measurements on magnetic properties allowed 
determination of inductivity (both active and passive), tangent of loss angle and curves of primary 
magnetizing (Fig.2b). These curves have been used for the simulation of computer magnetic 
phenomena carried with the aid of the finite elements method. 
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1. Introduction 

FCC metals and alloys are frequently used in cryogenic applications because of their excellent 
physical and mechanical properties including ductilit y. These materials undergo at low temperatures 
three distinct phenomena: dynamic strain ageing, plastic strain induced transformation from the 
parent phase (γ ) to the secondary phase ( 'α ) and evolution of micro-damage.  

The phase transformation process leads to creation of two-phase continuum where the parent 
phase coexists with the inclusions of secondary phase. Experimental results indicate the correlation 
between decreasing damage rate and increasing martensite content. 

2. Basic equations 

The model is based on the following assumptions: (1) two-phase continuum is composed of 
the austenitic matrix and martensite platelets represented by small  type Eshelby elli psoidal 
inclusions, randomly distributed and randomly oriented in the matrix; (2) the austenitic matrix is 
elasto-plastic-damage, whereas the inclusions show purely brittle response; (3) current damage state 
is described by the use of second-order classical damage tensor; (4) rate independent plasticity is 
applied: it is assumed that the influence of the strain rate is small  for the range of temperatures 2-77 
K; (5) small  strains are assumed: the accumulated plastic strain does not exceed 0.2; (6) mixed 
isotropic/kinematic hardening affected by the presence of martensite fraction is included; (7) the 
two-phase material obeys the associated flow rule. 

The general constitutive law includes plastic, thermal and transformation strains: 
( )bs

kl
th
kl

p
klklij klij E ξεεεεσ −−−= )(D  

where p
ε  is the plastic strain tensor, ξ  denotes the volume fraction 

of martensite, bs
ε  denotes the free deformation called bain strain, and th

ε  stands for the thermal 
strain tensor. As the model is based on the rate independent plasticity, the plastic yield surface takes 
the form: ( ) ( ) 0

~~~~
,

~
,~

2 =−−−= RJRf yp σXσXσ , where σ~ , X
~  and R

~  are the effective stress, kinematic 

and isotropic hardening variables, respectively. The hardening model is represented by equations: 
p

ijij dgdX εξ )(
3

2= , ( )dpfdR ξ=  where )(ξg  and )(ξf  are derived in [2]. 

The kinetic law of ductile damage evolution in austenite )(γ
ijD  is proposed in the form (cf. 

[1]): )( D
)( ppHpCYCD ljklikij −= && γ

 
where Dp  denotes damage threshold, ijY  is thermodynamic force 

and )( p
εijC  represents texture induced anisotropy of damage, which is also subjected to evolution. 

Martensite inclusions are subject to brittle damage described by the second order damage 
tensor )'(α

ijD . According to [3] the deterioration of the brittle material structure due to applied load 

can be described by the damage evolution equation expressed in the form of the tensorial function: 

ijijij ffD σδα )()( 21
)'(

σσ +=  where the damage tensor depends directly on the stresses applied.  

The total amount of damage in a representative volume element is obtained via the linear 

rule of mixture, )'()()1( αγ ξξ ijijij DDD +−= , where ξ  denotes the volume fraction of martensite. A 
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simpli fied evolution law for the volume fraction of martensite has been introduced after [3]: 
( ) ( )( )( )ξξξ ξ −−= L,, ppHpTA p

&&& σε . A is a function of temperature, stress state and strain rate; ξp  

denotes the accumulated plastic strain threshold (to trigger the formation of martensite), Lξ  stands 

for the martensite content limit and H represents the Heaviside function. Consistency multiplier λ&  
is obtained from the consistency condition (cf [4]): 
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where h is the generalized hardening modulus and S  is the sensitivity parameter describing the 
influence of phase transformation on the yield surface. 

3. Numerical simulation 

The derived constitutive model is implemented into ABAQUS/Explicit by the use of 
VUMAT procedure and used to numericall y simulate the behaviour of steel structural elements at 
cryogenic temperatures. The numerical algorithm consists of three steps: elastic predictor, plastic 
corrector and damage update. For plastic corrector, performed for the frozen state of damage, a 

residual vector is built , [ ]TfRX RRRR ,,,σ=R , and the corresponding vector of unknowns, 

[ ]TR λ∆= ,,,XσU . The condition 0UR =)(  defines the solution. The expansion into a Taylor series 
results in the following solution for U : 

n
n

nn R
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R

UU
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1

−

+





















∂
∂−= . 

The iteration procedure is stopped when the norm of )(UR  is suff iciently small . 
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Problems dealing with stress concentrations in deformable solids containing different kinds of 
defects attract the attention of specialists from many areas, such as geomechanics, metallurgy, 
materials science. Rigid inclusions (called anticracks) are the counterpart of cracks. From the 
standpoint of inhomogeneities in solids, these defects are the two extreme cases, namely, for a rigid 
inclusion µ →∞ , and for a crack 0µ → , where � is the shear modulus of the inhomogeneity 
phase. These are the two most dangerous extremes. Many elements of constructions are operated in 
high-temperature environments. Hence, the study of thermoelastic field disturbed by an anticrack is 
important from the point of view of fracture mechanics.  

This paper examines the three-dimensional problem of finding thermal stresses due to 
an insulated rigid sheet-li ke inclusion under a uniform heat flow directed parallel to the inclusion 
plane (Fig. 1). The corresponding  problem with a uniform thermal flux perpendicular to the plane 
of the inclusion was considered in [1] and [2].  

 

Fig. 1. An anticrack in an elastic space under a uniform heat flow parallel to the inclusion plane  

It is assumed that a uniform heat flow with far field constant intensity 0q  and directed at an 

angle φ  to the 1Ox -axis is incident parallel to the surface of the heat-insulated rigid inclusion. 

Moreover, external loads are absent. It turns out that the inclusion does not disturb the linear 
temperature field, so it remains to solve the thermal stress problem with the boundary conditions 
involving an arbitrary shaped anticrack. A general method of solving this problem is presented. 
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With the use of appropriate harmonic potentials and the Fourier transform technique, the problem is 
reduced to the solution of two-dimensional singular equations for the shear stress jumps across the 
inclusion. For the purpose of ill ustration, exact results are given for the penny-shaped rigid 
inclusion. It is observed that the thermal stress fields near the inclusion front have the typical 
inverse square root singularities. Two mechanisms of material failure are found to be possible: 
opening Mode I deformation and exfoliation of the material from the inclusion.  
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1. Introduction 

The turbine housing (T/H) of an exhaust turbocharger as the most cost-intensive key 
component is exposed to extensive multiaxial thermo-mechanical fatigue (TMF). This leads to a 
major design challenge with the T/H to ensure the guaranteed li fetime in relation to the high-
temperature behavior of the materials. 

The first step was to develop and validate a phenomenological l ifetime approach together with 
a constitutive material model of Chaboche-type applied in a preceding Finite-Element analysis 
(FEA) for application on the casting materials of type Ni-resist D5S and vermicular cast iron GJV 
[1], [2]. Both TMF tests on specimens subject to characteristic load conditions and thermal shock 
tests on T/H have been conducted for identification and verif ication purposes. The scatter band of 
the estimated number of cycles until crack initiation compared to experimental results on various 
critical T/H positions has clarified the requirement for more experimental and analytical work 
during approach adaption for T/H design. 

The present study deals with the more detailed analysis of application-specific phenomena 
and microstructural phenomena to improve the description of both the deformation behavior and the 
damage behavior with respect to the mechanism acting on the microstructure. Furthermore, out-of-
phase (OoP) TMF tests have been used to validate the material-specific creep-fatigue damage sum 
compared to previous in-phase (IP) TMF tests. 

2. Results and conclusion 

Isothermal strain controlled low-cycle fatigue (LCF) tests at varying temperatures have been 
conducted on smooth specimens by applying triangular shaped cycles without a dwell  period to 
investigate the influence of strain rate, mean strain and aging as representative phenomena, which 
could occur due to arbitrary operation conditions. The cyclic deformation behavior at mid-li fe 
affects the calibration of the material model applied in the FEA, and the LCF li fe curves are 
important for the fatigue damage calculation. 

For example, in Fig. 1, the effect of the strain rate dH=10-3s-1 compared to a power of ten 
lower strain rate of 10-4s-1 for D5S is shown. At a moderate temperature of around 200°C, the 
influence is insignificant. Beginning at approximately 500°C, the lower strain rate has more 
relevance. The LCF li fe curves in Fig. 1 (a) il lustrate two effects. At a higher strain width range, the 
cycle number decreases together with a lower strain rate. Due to the higher strain load and the lower 
strain rate, the superimposed creep damage should be the main damage mechanism. In contrast to 
lower strain width ranges, the cycle number increases. It seems that in the latter case, the ductilit y of 
the material dominates the failure mechanism and creep, especiall y at lower loads may become of 
subordinate relevance. Fig. 1 (b) demonstrates a significant drop in strength at 700°C caused by 
lower strain rate. 

Compared to the in [1] proposed geometric equivalent fatigue damage calculation of an 
anisothermal stress-strain hysteresis loop, further damage calculation procedures considering mean 
stress/strain effects have been developed. Several critical plane approaches and energy criteria have 
been applied to handle multiaxial stress states. 
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Figure 1. (a) LCF li fe curves and (b) cyclic stress-strain curves of D5S at strain rate of 10-3s-1 (black 

shaded line) and 10-4s-1 (gray shaded line), respectively. 

By applying the underlying numerical calculation method of the li fetime approach, creep 
damage fraction and fatigue damage fraction until crack initiation have been determined by use of a 
representative cycle at mid-li fe on basis of the TMF tests conducted; the results for D5S, consisting 
of an austenitic matrix with spherical graphite inclusions and pearlite fractions, are shown in Fig. 2. 
Both damage fractions are approximately of the same amount. Moreover, equal TMF li fetime 
behavior results from OoP and IP testing conditions, respectively. The assumption of using only the 
mid-li fe cycle is justified due to minor hardening and softening effects during TMF loading.  

Based on the results of advanced LCF testing 
under application-specifi c conditions and applying the 
validated creep-fatigue damage sums a more accurate 
estimation of the cycle number until crack initiation was 
demonstrated on specimens subject to characteristic 
TMF load conditions as well  as on critical positions of 
the T/H design. Alternative fatigue damage methods, e.g. 
based on micro crack growth, are also being focused on. 
In addition, the analysis of microstructural phenomena 
should help to enhance the creep-fatigue interaction 
together with a more detailed failure description. It is 
assumed that tensile and compressive stress both have an 
equal effect on creep, and no distinction is made when 
calculating the creep damage. In a further step, it is 
proposed to describe crack propagation following crack 
initiation as part of the approach. This enables expansion of the li fetime assessment up until leakage 
and design failure. 

3. References 

[1] F. Laengler, T. Mao and A. Scholz (2010). Validation of a phenomenological li fetime 
estimation approach for application on turbine housings of turbochargers. 9th Int. Conf. on 
Turbochargers and Turbocharging, May 19-20, London, p. 193-205. 

[2] F. Laengler, T. Mao and A. Scholz (2010). Phenomenological li fetime assessment for turbine 
housings of turbochargers. 9th Int. Conf. on Multiaxial Fatigue & Fracture, June 7-9, Parma. 

Figure 2. Fatigue and creep damage 
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1. General 

 Metal/ceramics interpenetrating composites are new materials obtained by liquid metal 
infilt ration into a ceramic foam, called a preform. Ceramic preforms are produced by a new method 
of manufacturing of porous ceramics known as gelcasting of foams. Porous ceramics fabricated by 
this method is characterized by a continuous network of spherical cells interconnected by circular 
windows. The open porosity due to the presence of windows creates good hydro-dynamical 
properties for liquid metals infilt ration. For better understanding mechanical properties of such 
composites a numerical model of ceramic foam is needed. 

2. Geometry of ceramic foams 

 Geometry of ceramic foams can be generated in two steps. First, the coordinates of the center 
point of the spherical bubbles and its diameter are produced by PYTHON scripts. The diameters of 
spherical bubbles were estimated from micro-tomography and scanning electron microscopy 
images. On the other hand, the coordinates of the center points are determined in such a way that 
the bubbles have to intersect with each other. Finall y, the intersecting bubbles are subtracted from 
the bulk block of any shape. 

3. Numerical simulations 

 Several numerical simulations of uni-axial compression test have been performed. The bottom 
surface of the sample was full constrained and the top surface of this sample was moved parallel to 
the z- axis. The force was resulted from the final step of displacement in simulation. As a result the 
effective Young modulus of the investigated foam was determined. 

 

 

Fig 1. Numerical model of the foam with porosity 90% subjected to compression. 
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Introduction 
 

 It is well  known that a heavy rainfall  can trigger a loss of stability of slopes. This is 
particularly the case for slopes constructed in cohesive soils, such as clay or a cemented soil. The 
problem of stability of natural and engineered slopes has been a subject of research for a number of 
decades. 

The primary diff iculty in modelling the loss of stability due to a rainfall  lies in assessing the 
in-situ conditions and in describing the coupling between the time-dependent process of water 
infilt ration and the evolution of stress field. The problem is typicall y analysed by integrated 
software in which the transient seepage analysis is coupled with traditional limit equilibrium slope 
stability analysis. Alternatively, the frameworks for unsaturated soil are implemented in which the 
suction pressure is considered as a state parameter and an optimization technique is used to search 
for a critical slip surface. In general, the conventional methods for assessing the stability of 
unsaturated soils, based on limit equilibrium approach, significantly underestimate the safety 
factors. Therefore, more accurate techniques are required. 

 In clays, the bond strength increases rapidly with decreasing water content. It is rather 
apparent that free water in clays has low compressibilit y and virtuall y no viscosity. The water in the 
vicinity of minerals, however, has quite different properties which cannot, in fact, be quantified due 
to complex chemical interactions. Therefore, the measurement and/or control of suction pressures 
are diff icult, which is the main reason why the developments in the area of mechanics of 
unsaturated clays have not advanced that significantly. 

 Recognizing the above limitations, the approach implemented here is based on a 
phenomenological framework of chemo-plasticity. This is believed to be a pragmatic alternative to 
both the micro-mechanical approach (which in view of complexity of chemical interactions 
represents an overwhelming task) and the classical notions of unsaturated soil mechanics. Within 
the proposed framework, the injection of water is said to trigger a volume change 
(swell ing/collapse) that is coupled with reduction in suction pressures that, in turn, results in 
degradation of strength and deformation properties.  

 
The scope of the work 
 

The first part of this paper deals with the formulation of the problem. This includes the 
derivation of the constitutive relation, specification of a criterion for the onset of global instability 
and a brief review of the coupled transient formulation.  

Within the framework of chemo-plasticity, the progress in the chemo-mechanical interaction 
is monitored by a scalar parameter that reflects the evolution of the matrix suction pressure. This 
parameter is embedded in the classical plasticity framework. Since the kinetic of the chemical 
reactions at the micro-level depends explicitl y on time, the macroscopic response is also time-
dependent. The progress in the chemo-mechanical interaction is coupled with a continuing 
degradation of strength and deformation properties. The specifi c mathematical framework 
employed is that of deviatoric hardening, which incorporates a non-associated flow rule and 
attributes the hardening effects to accumulated plastic distortions. Here, the constitutive relation is 
derived first, followed by the formulation of an explicit (backward Euler) and implicit (forward 
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Euler) integration schemes. An il lustrative example is provided involving a typical creep test in 
which the chemo-mechanical interaction results in either stationary conditions or a spontaneous 
failure of the sample. 

The governing equations describing the transient hydro-mechanical coupling are analogous to 
WKRVH� HPSOR\HG� LQ� %LRW¶V� WKHRU\�� 7KH� SUREOHP� LV� IRUPXODWHG� E\� FRQVLGHULQJ� WKH� RYHUDOO� OLQHDU�

momentum balance for the soil-fluid mixture, the momentum balance for the fluid and the mass 
conservation for the fluid. Assuming that WKH�IOXLG�IORZ�LV�JRYHUQHG�E\�'DUF\¶V�ODZ�DQG�QHJOHFWLQJ�
the connective terms, the original formulation, in terms of displacement - fluid velocity - pore 
pressure, can be simplified to that in which the primary nodal variables are the displacements of the 
soil skeleton and the pore pressures. In this case, the boundary conditions are expressed in terms of 
traction/displacements and pore pressures/influx. Since the primary application here involves the 
case of unconfined flow, the material is considered as partially saturated under the constraint of no 
excess of air pressure. This assumption is perceived purely as a numerical strategy that enables to 
trace the history of evolution of phreatic surface. 

The numerical analysis, discussed in the second part of this paper, involves a slope in a 
cohesive soil (clay) subjected to a period of an intense rainfall . The slope examined in this study has 
dimensions typical of engineered slopes in Singapore; it is also representative of shallow slopes in 
the province of Manitoba (Canada) that underwent a translational failure in the late 19��¶V��$�PDMRU�
rainfall  event of a prescribed intensity is considered. Note that the actual amount of rainfall  that can 
infilt rate the ground at a given time ranges from zero to infilt ration capacity, which depends on 
moisture content and porosity of the specific soil. Apparently, if the precipitation rate exceeds the 
infilt ration rate, the runoff will  usually occur. In the simulations presented here, no antecedent 
rainfall  is applied prior to the major event. 

The finite element analysis incorporates the transient hydro-mechanical coupling, as described 
earlier. The evolution of the wetting front is monitored and the framework of chemo-plasticity is 
employed to model the mechanical characteristics of clay. The overall  stability of the slope is 
assessed by introducing a criterion that is expressed in terms of second order work normalized with 
respect to that of an elastic continuum.  
 
Keywords: chemo-plasticity, rainfall  infilt ration, hydro-mechanical coupling, transient phreatic surface, 
 stabilit y criterion 
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1. Introduction 

The contact interaction of two elastic spheres under normal or oblique loading and torsional 
couple has been studied by Mindlin and Deresiewicz [1], Lubkin [2], Walton [3], Segalman et al. 
[4]. For oblique loading only the contact slip regime was studied with the sticking zone in the 
central part and the slip zone in the outer part of contact area. The sliding regime then occurs when 
the slip zone develops within the whole contact area. The discrete memory of contact response with 
consecutive creation and erasure  of loading events has been presented by consecutive loading 
surfaces in the T−N space, where T is the tangential load vector and N is the normal load to the 
contact plane; cf., Dobry et al. [5], Jarzębowski and Mróz [6]. 

When a sliding regime develops under the finite normal load N and the increasing tangential 
load T, the central sticking zone is erased and sliding occurs along the whole area of contact. For a 
specified trajectory of the sphere centre, both N and T vary and the contact force evolution, length 
of sliding path, time-period of contact interaction and frictional energy dissipation become of 
primary importance in the deformation and flow analyses of granular matter. 

In particular, the static and dynamic contact response is considered for the linear and circular 
sphere motion trajectories, analyzing the contact force traction evolution and dissipated energy due 
to frictional interaction. For the periodic sliding motion, the hysteretic response is analysed and 
combined slip and sliding regimes are considered. The modeling is performed analyticall y and 
numericall y as well  for the displacement and force controlled processes.   

2. Analysis of the contact response 

The sliding regime between to identical sphere of radii  R, elastic modulii  E and Poison ratios 
ν can be easil y specified requiring uφφ > ,  where φ  is the angle between the line normal to the 

contact zone radius at and the linear path of the sliding sphere. An ultimate angle uφ was specified 

by formula ( ) ( )
( ) ( ) ( )uφtanν2

4

µ

ν14

µν2
φtan =+≈

−
−≥  (µ  is the friction coeff icient between the sphere 

surfaces) and plotted in Figure 1(a). The circle of radius ( )us RR φsin2=  plotted at point O 

indicates that the sliding regime occurs for all  linear paths emanating from the point O1 and not 
intersecting the circle. On the other hand, the slip regime develops for all  linear paths intersecting 
the circle. In other words, there is the sphere of radius sR  and conical domain with its vertex at O1 

and tangential to the sphere specifying the slip regime and the external domain specifying the 
sliding regime bounded by the plane normal to OO1. The contact separation occurs for the paths 
emanating from O1 in the exterior of slip and sliding domains. 

During sliding the contact zone moves with respect to both spheres, changing its orientation 
and size. In particular, at the contact engagement the overlap is zero, while with progress of sliding 
path st, the overlap ht starts to grow up reaching the maximal value at the symmetry line, and, 
subsequently, it diminishes tending to zero again at the contact separation Figure 1(b). The 
analytical solution within the continuum mechanics formulation is not available and only the 
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numerical incremental procedure can be applied. Therefore, a simpli fied model was developed by 
assuming the normal contact traction N to be specified by the Hertz solution in terms of the 
contacting spheres overlap geometry and material characteristics, while the tangential traction is 
defined by the sliding friction rule, NT µ= . In Figure 1(b), the tangential force (b) traction during 
the hysteretic behaviour under the imposed linear trajectory of the contacting sphere is 
demonstrated. Here, the unloading curve may be accounted for neglecting the slip displacement uδ  

(i.e., an instant unloading) or with account that. The tangential force vs. slip curve was described in 
terms of a power law function accounting for the ultimate slip displacement, at which the sliding 
regime starts, and varying contact zone radius.  

 
a) 

s

 

b) 

 
 

Figure 1 Slip, sliding and separation domains for the linear sliding paths (a); tangential force 
traction during the hysteretic behaviour (b) 

3. Concluding remarks 

The evaluation of driving force during contact sliding motion was determined for both 
monotonic and reciprocal sliding motion. The analytical formulae and diagrams of driving force 
versus sliding path have been specified for linear and circular paths. The sliding trajectories are also 
determined for the load controlled programs. The results presented can be applied in the 
experimental testing of frictional response of contacting bodies, in a wear study of rough surfaces or 
in the contact interaction analysis of granular material during flow. The results can also be relevant 
for the ongoing development of the discrete element method. 
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1. General 

Granular materials consist of grains in contact and of surrounding voids, which change their 
arrangement depending on environmental factors and initial density. Their micromechanical and 
fabric behaviour is inherently discontinuous, heterogeneous and non-linear. To describe their 
behaviour, two main approaches are used: continuum and discrete ones. The first ones perform 
simulations at the global scale using the finite element method on the basis of e.g. elasto-plastic and 
hypoplastic constitutive models enhanced by a characteristic length of micro-structure to describe 
strain localization. In turn, the latter ones perform simulations at the grain scale, i.e. each grain is 
modelled individuall y. Their advantages are that they directly model micro-structure and can be 
used to comprehensively study the mechanism of the initiation, growth and formation of shear 
zones at the micro-level which strongly affect macro-properties of granular matter. The 
disadvantages are: high computational cost, inabilit y to model grain shape accurately, diff iculty to 
validate it experimentally as the inertial and damping effects lose their meaning in quasi-static 
problems. However, they become more and more popular nowadays for modelli ng granular 
materials due to an increasing speed of computers and a connection possibilit y to the finite element 
method. A large number of tests and simulations reveal that irregularly shaped grains strongly affect 
the quasi-static mechanical behaviour of granular materials. To resemble the real grain shape 
(roughness), two main approaches are usuall y used: 1) contact moments between rigid spheres or 
disks are assumed or 2) clusters of combined discrete elements that form irregularly-shaped grains 
are introduced. 

2. Discrete results 

The objective of this paper is to present numerical analyses of quasi-static triaxial and biaxial 
compression tests carried out to determine the macroscopic behaviour of a sand specimen composed 
of discrete elements in the form of: a) spheres with contact moments and b) symmetric and non-
symmetric clusters of spheres. A three-dimensional discrete model YADE developed at University 
of Grenoble was used [1], [2] which takes advantage of the so-called soft-particle approach (i.e. the 
model allows for particle deformation, modeled as an overlap of particles). Two contact models 
were considered (linear and non-linear according to Hertz [3] and Mindlin and Deresiewicz [4]). 
The particle breakage has not been considered yet. The main intention of our studies was to 
calculate the effect of the grain roughness (shape) on the shear strength, dilatancy, elastic and 
dissipated energies of real sand (so-called Karlsruhe sand), which had the same initial void ratio, 
mean grain diameter and grain distribution. Attention was paid to the energy transformation in sand 
and its elastic and dissipative characteristics, playing a fundamental role in the granular matter 
behaviour [5]. In addition, the effect of the grain distribution curve, initial void ratio, pressure level, 
mean grain diameter and specimen size was numericall y analyzed. Discrete simulation results for 
triaxial and biaxial compression were compared with corresponding experimental data from drained 
axisymmetric triaxial compression tests performed by Wu [6] and drained biaxial compression tests 
carried out by Vardoulakis [7] at Karlsruhe University with real sand. 

The discrete results were compared with the corresponding FE results carried out with a 
micro-polar hypoplastic constitutive model which is capable to realisticall y capture the macroscopic 
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behaviour of granular materials by taking into account shear localization [8], [9]. The micro-polar 
constitutive law takes into account the effect of density, pressure, direction of deformation rate, 
mean grain size, grain roughness and grain crushing on the material behaviour. Due to the presence 
of a characteristic length in the form of a mean grain diameter, the constitutive model can describe 
the formation of shear zones: their thickness and spacing, and the related size effect. A micro-polar 
model makes use of rotations and couple stresses, which have clear physical meaning for granular 
materials. First, the rotations and couple stresses can be observed during shearing and remain 
negligible during homogeneous deformation. Second, the additional rotational degree of freedom of 
a micro-polar continuum arises naturall y by mathematical homogenization of an originall y discrete 
system of spherical grains with contact forces and contact moments. Thanks to a direct comparison 
between FEM and DEM [2], it is possible to calibrate more precisely both approaches to simulate 
shear localization in granular materials. 

Finall y, the evolution of micro-structure within a shear zone (during their initiation, formation 
and propagation) and to relationship between the self-organization of force chain networks and 
loaded grain contacts was studied during a biaxial compression test. Several characteristic and 
remarkable events occurring within a shear zone such as: vortices, buckled granular columns, shear 
micro-bands, alternating periodic dilatant and contractant regions were numericall y investigated in 
order to determine their effect on the width of a shear zone. 
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1. General 

The practical knowledge of the mechanical behaviour of granular materials is largely based on 
element tests assumed to represent uniform stress and homogeneous strain. Some important 
parameters such as the angle of internal friction and dilatancy angle usuall y come from element 
tests. These parameters are determined from global measurements of forces and displacements at a 
specimen’s boundaries and vary from their local quantities, which cannot be easil y measured. The 
difference between local and global (averaged over the whole volume of the sample) measurements 
are mainly due to localised deformation, concentrated within narrow shear zones, but also due to 
imperfect boundaries of the test equipment. The effect of localised deformation and imperfect 
boundary conditions have to be separated to distinguish the material behaviour from the structural 
one. And, as it is broadly accepted that localised deformation controls a global post-peak response 
of granular material, it is necessary to understand its behaviour within shear zones. It became 
recently much easier due to some full  field measurement methods based on digital image 
correlation. 

Validation of soil  constitutive models has been usuall y performed by numerical simulations of 
element tests – there is less possibilit y to do it for the entire geotechnical system, even at a small  
scale. This paper delivers the experimental material to enable a validation of some theoretical soil  
models – especiall y hypotheses including soil  micro-structure, which can only be verified with the 
local knowledge of stresses and strains. Small  scale plane strain tests were performed, which 
modelled a simple soil  mechanics boundary value problem – granular material retained by a rigid 
wall . The wall  could translate horizontall y into and out of granular material. This kind of test 
arrangement was chosen, since it produces a relatively simple and easy to analyse localisation 
pattern. The characteristic features of the shear zones formation in deforming granular materials 
were investigated using Particle Image Velocimetry (PIV), which was combined with a photo-
elastic study of the stress field. PIV is an optical technique for measuring displacement fields from 
successive digital images and was employed to analyse experiments on two different granular 
materials, composed of (1) sand grains and (2) glass granules. The tests on glass granules were 
supplemented by taking photo-elastic images in circularly polarised li ght to gather information on 
changes in the average stress field, accompanying the specimen deformation. Attention was focused 
on the effect of the initial density, grain coarseness and magnitude of wall  displacement on shear 
localisation within a strain field and its geometrical relation to some structures found in the stress 
field. 

We need the simultaneous knowledge of both stress and strain fields to recognise internal 
conditions in granular materials. It was shown by Le�niewska and Muir Wood [1], that one can 
successfull y combine stress and strain measurements in case of glass ballotini – a good substitute 
material for quartz sand. The question then arises to which extent the observations performed on 
glass ballotini can be considered as relevant also for real sands. Any comparison between sand and 
glass ballotini can be made through the strain fields only, as sand grains cannot be made 
transparent, so do not show the photo-elastic effect. As a result, any direct conclusions regarding the 
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relation between stress and strain fields can be made solely on the base of glass ballotini tests. We 
believe, however, that if both granular materials show similar deformation patterns, their stress 
fields have to be also similar and equall y related to the strain field. So the knowledge on the stress 
field in the case of a sand sample can be obtained in an indirect way, if only the qualit y of 
representing real granular material by glass ballotini is suff icient.  

The specific objective of this paper was therefore to verify the qualit y of glass ballotini as a 
surrogate granular material, in terms of a full  field analysis, by pointing out any significant 
similarities or differences within strain fields produced in the same type of tests on both granular 
materials, using the same test box, same loading system and same sample preparation method [2]. 
The paper belongs to the longer series, which general goal is to increase our still  insuff icient 
knowledge on the geometrical relation between strain and stress fields in granular materials and we 
believe that the data presented here add to this knowledge some crucial information, especiall y 
important for the future work. 

The comparison between glass granules and sand grains was done for initiall y dense 
materials, as it is known that in such a case, a localisation pattern is usuall y simpler, better 
developed and easier for observations than in the case of granular material in an initiall y loose state. 
The other reason was that due to the high uniformity of glass granules it was diff icult to produce 
initiall y loose sample – the almost mono-disperse granulate tended to organise at approximately one 
density with the evidence of a local cristalli sation (order). Due to that the photo-elastic tests on the 
initiall y loose glass granulate were postponed for the future (use of at least bi-disperse glass 
granulate is planned). 

We performed also tests on initiall y loose sand and some results are presented to show that 
our experimental procedure can properly capture the difference between a loose and dense state of 
granular material. 

2. Conclusions 

Strain localisation and changes in the stress field are closely correlated. The nature of this 
correlation has to be further studied. Our hypothesis from the present analysis is that the shear band 
is adjacent to the elevated stress region and coincides with some lowered stress area. 

The procedure to compare photo-elastic stress fields and strain fields obtained by digital 
image correlation may contribute to the development of rational constitutive models including shear 
localisation and can be used to provide a qualitative support for advanced hypotheses of the 
behaviour of granular materials in shear zones. 

The tests performed on spherical glass granules provide the information helpful in verifying 
discrete element analysis models of granular materials. Discrete elements can have different 
geometries, but to keep a low calculation cost, usuall y the simplest spherical geometry is chosen 
(dealing with realistic shapes would lead to a prohibitive calculation cost). In spite of objections to 
the spherical geometry being too idealised to accurately model the real granular material behaviour, 
our tests show they can represent the real soil  behaviour with respect to the width and mode of shear 
localisation (the shear resistance may be however strongly underestimated [3]).  
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1. Introduction

Ice cores drilled in large polar ice caps in Antarctica and Greenland show strong anisotropic

micro-structures (fabrics), in which individual ice crystal c-axes (axes of crystal hexagonal symmetry)

are aligned along some preferential directions (Gow el al. [1], Thorsteinsson et al. [2]). Such spatially

oriented micro-structures form, and subsequently evolve, in the crystalline material in response to

changing stress and deformation states which ice particles experience during their descent from the

free surface to depth in an ice sheet. As a result, the microscopic structure of the material significantly

varies with ice depth, and this is reflected by considerable changes in the macroscopic properties

(viscosities) of the medium.

Two major microscopic mechanisms are involved in the development, and subsequent evolution,

of anisotropic fabrics in polar ice masses. The first is the process of crystal lattice rotation, which

operates throughout the entire domain of an ice sheet, and progressively leads to the formation of

strong single-maximum fabrics, with the majority of the crystal c-axes clustered along the vertical.

Such strong fabrics are usually found in bottom layers in central parts of a typical glacier. The other

major micro-mechanism affecting the anisotropic properties of ice is the phenomenon of migration (or

dynamic) recrystallization, which usually occurs in highly sheared near-bed regions of ice sheets. This

process modifies the anisotropic micro-structures that have been created earlier by the crystal lattice

rotation, and gives rise to so-called girdle or multi-maxima fabrics (Budd and Jacka [3], Alley [4]),

with very coarse and interlocking grains (Duval and Castelnau [5]). Such changes in the micro-

structure of ice result in significant changes in macroscopic viscosities of ice; therefore they must be

accounted for in ice sheet flow models to properly simulate the real behaviour of polar glaciers.

2. Polar ice sheet flow model

In large-scale numerical models that have been developed so far, and are used to reconstruct

the past, or predict the future, climatic scenarios and their effects on the behaviour of polar ice caps,

the evolution of ice anisotropy caused by the migration recrystallization mechanism is commonly

ignored. It is possible that still the only exception is the paper by Staroszczyk [6]. In that work,

however, a simplified case of an ice sheet flow with an a priori prescribed free surface profile is

analysed, so that it cannot serve as the solution of a real flow problem in which the free surface is a

result of the flow; that is, the determination of an unknown free surface shape is part of the solution

procedure.

The proposed ice sheet flow model is an attempt to fill this gap; that is, to solve a problem with

an unknown free surface geometry and incorporating the migration recrystallization effects. Hence,

a steady flow of an axially-symmetric ice sheet which slides on a rigid bedrock is considered, in which

the glacier motion is driven by gravity forces under the action of prescribed climatic conditions (i.e.,

average accumulation and melt rates on the glacier boundaries). Temperature field in an ice sheet

is also prescribed in order to uncouple the mass and momentum balance equations from the energy

balance relations. For the above input conditions, the free surface profile (including the maximum

glacier thickness and the lateral span) is determined. The main objective of the analysis is to examine

how the migration recrystallization of ice influences the overall flow of a glacier, and, in particular,
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to investigate its effect on the free surface shape and the velocity field within the glacier. For this

purpose, a method developed by Gillet-Chaulet et al. [7] is adopted. The idea of the method is to relate

the micro-mechanical properties of ice to a small set of geometric parameters (invariants of so-called

orientation tensors) which characterize the micro-structure. Then, the six macroscopic viscosities in

the orthotropic law are also calculated as functions of the above geometric parameters, linking thus

the macroscopic properties to microscopic fabric. The microscopic behaviour of recrystallizing ice is

described by two versions of a micro-mechanical model formulated earlier by Staroszczyk: a uniform

strain-rate model [8], and a uniform stress model [9]. A new feature, compared to the original forms of

the laws, is an inclusion of strongly non-linear effects of temperature and deviatoric stress magnitudes

on the viscosities of ice.

The solution of the flow problem is constructed by a method of asymptotic expansions, known

in glaciology as the shallow ice approximation (Hutter [10], Patterson [11]). Hence, a small parameter

ǫ is introduced in the analysis, reflecting the small ratio of stress and velocity gradients in the lateral

direction of an ice sheet compared to those in the thickness direction. This parameter is used to scale

the flow equations and the associated boundary conditions. In the ensuing equations, all terms of

order ǫ and smaller relative to unity are then neglected, with the aim to derive simpler, leading-order,

forms. The reduced equations are subsequently integrated through the ice thickness to eliminate one

spatial coordinate, which leads to a two-point boundary-value problem for a second order parabolic

differential equation. The latter is solved numerically to calculate a function describing the free

surface profile. Numerical simulations have been carried out for different accumulation, ablation and

basal melt rates, in order to examine their effects on the glacier geometry (thickness and lateral span),

and the depth profiles of the ice velocities. For illustrations, the results for isotropic ice flows are

compared with those for anisotropic ice flows, with and without migration recrystallization involved.
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1. Introduction 

In this paper we present our numerical model of static, possibly physicall y non-linear 
effective behaviour of a body made of Functionall y Graded Material (FGM). As it is known, 
geometry and materials composition of a “ representative volume” (“RV”) (“RV” means: 
representative volume RV suitably defined for the case of FGM) is a function of a global variable x, 
thus effective material coeff icients defined for some small  neighborhood surrounding x are also 
functions of the global variable. In a solution of the boundary value problem (BVP) found for FGM 
the spatial variation of its macro properties must be taken into consideration. In a case when 
variation of mechanical properties of components can be expressed by elementary functions, a 
tolerance averaging technique (see [3]) is used to develop a symbolic formulae for effective 
material properties as a function of the microstructure. In our approach, in a case when the 
geometry of the microstructure is complex, Finite Element Method (FEM) and Artificial Neural 
Network (ANN) are jointly applied to describe dependence of effective material parameters on 
physical characteristics of micro components. We use ANN for approximation of the functional 
dependence of the composite properties on its microstructure. For each different “RV”  we compute 
effective material properties using classical algorithm of a “virtual testing”  of periodic composites. 
Elements of these procedures are described in [1] and [2].  

2. Algorithm of the hybrid solution  

The overall  algorithm we follow consists of ix main steps and is defined below: 
i. Definition of FE scheme for global BVP for the composite. Parametrisation of “RV” should 

be passed to the global FEM description.  
ii . Definition of FE schemes for local BVPs for a family of local representative volumes. 
iii . Solution of selected local BVPs for averaged constitutive relations, parametrised with 

parameters of local representative volumes using “a virtual testing” . 
iv. Initial learning of the ANN with the results of the above step. 
v. Use and a random verification of the approximated by ANN, effective constitutive data while 

assembling global stiffness matrix. Possible additional trainings of ANN.  
vi. Solution of the global BVP for FGM composite 

3. Modified soil as a FGM material 

Various modifications of mechanical properties of soils are widely used in engineering. In the 
presented paper we limit our consideration to cohesivless soils. We focus our attention on the most 
common mechanism of such the modification that assumes an introduction of a reinforcing medium 
as a liquid phase that fill s the pores. The hydro-mechanical properties of the soil  change after some 
time, needed for solidification of the filli ng medium. In this way, the resulting medium is treated as 
a composite with solidified matrix and inclusions that reflect a granular composition of the initial 
granular material. All  kind of injections can thus be modeled with the method of the analysis 
proposed in the paper. We exclude the techniques that result with composition of two different 
types of soils (“deep soil  mixing”). Both hydrofobisation and reinforcing with cementitious 
materials can be considered as a possible fields of practical applications of the proposed numerical 
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approach. The purpose of our work is to predict the resulting hydro-mechanical properties of the 
soils in function of distance measured from the source of injection. This is very important since the 
existing estimation of the injection-pails diameter or the size of the hydrofobized area are mostly 
phenomenological. The estimated hydro-mechanical properties of the modified soil  will  be 
expressed in terms of the known properties of the initial materials used. 

4. Non-fully reacted alloy as functionally (but not intentionally) graded material 

This example is taken directly from a numerical modelli ng of a thermo-mechanical behaviour 
of a super-conducting cable for a nuclear fusion device(see [2]). These cables are widely used to 
create high electromagnetic fields and are produced as a very complex, hierarchical composite with 
many levels of hierarchy. Here, we limit ourselves to study the structure at a micro level. At the 
reaction temperature (about 920K-950K, depending on the manufacturer) the Sn included in the 
bronze diffuses into Nb and forms Nb3Sn – a super-conducting alloy. Usuall y the filaments are not 
completely reacted. In modeling, we must take into consideration the presence of the non reacted 
kernel, its diameter, its position in the section of the strand. Since the diameter of the not reacted 
kernel is depending on the position of strand in the cable (due to the process of manufacturing), this 
composite is clearly, functionall y (but not intentionall y) graded. The similar gradation of properties 
is superposed with yielding which is non homogeneous in the cable, because of bending due to 
Lorentz forces. We have trained the ANN with several results of virtual tests, performed on various 
geometries of the “RV”. Relatively simple scripts allow to execute the computations and to redefine 
mesh for all  virtual tests for different inner diameter, various eccentricity and, possibly, various 
yielded zones. The effective properties, resulting from these computations, are used then for ANN 
training and global FEM computations. 

5. Conclusions 

Numerical analyses show that the functional dependence of material parameters on the global 
position x is very easy to be approximated and then – interpolated using ANN trained with small  
number of learning patterns. It was tested numericall y that the use of various “RV” (means – 
representative volume suitably defined for the case of FGM) in the virtual testing procedure seems 
to be suff icient to take into account the variation of the FGMs geometry within given, finite 
tolerance. 
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To avoid damage of electronic devices the heat generated has to be dissipated by adequate 
cooling systems. In aeronautics for instance, some electronic parts work during short periods of 
flight (take-off, landing, breaking ...). But they have to be cooled in order to protect the electronic 
devices from themselves. The major part of cooling methods is based on the forced convection of a 
cooling liquid. This solution has good performances but requires a lot of equipment li ke pumps, 
filters, networks... So, this is not the best opportunity for aeronautical field where weight, price and 
reliability are critical. The aim of this study is to develop a passive system which works without any 
energy supply. The basic solution to create a passive heat dissipation system is to fix  on the 
electronic device a bloc made of aluminium or copper to dissipate heat. But such a system can 
become heavy prohibiting its use for aircrafts because of the additional weight. Another technical 
solution consists in using the latent heat of phase change materials (PCMs). The controlled mass of 
PCM can dissipate the quantity of heat generated by the electronic device during a short period .The 
major disadvantage of the chosen PCM, a polymer material is its low thermal conductivity. This is 
why it is necessary to improve the global heat flux between the heat source and the PCM by the use 
of open cell  aluminium or copper foams. This association allows obtaining a homogeneous 
temperature inside the PCM [2]. Experimental tests have been performed in this study to evaluate 
and compare the performances of such heat dissipation systems with respect to a PCM system. 

Numerical analyses by finite element and finite volume methods have been performed to 
simulate the phase change of the PCM and the thermal evolution of the system. The complex 
geometry of the aluminium foam is a problem for the simulation: a huge number of elements is 
necessary to mesh the PCM embedded in open cell  foams, (over 6 mill ion of 3D elements). To 
circumvent this diff iculty, it has been decided to replace the PCM and the open cell  foam by a 
homogeneous material having the equivalent thermal properties of the composite. Several thermo-
physical properties are needed for thermal transient analyses, namely: the density, the thermal 
conductivity, the specific heat and the latent heat of the PCM. Scalar quantities such as density, 
specific heat and the latent heat of PCM/foam equivalent material are determined in function of the 
mass fraction or concentration of each component. For the tensors quantities such as thermal 
conductivity, it is necessary to take into account the specific geometry of the open cell  metal foam. 
A model using the geometry of open cell  metal foam has been proposed by Boomsma et al. [1]. 
This model is based on an ideal geometry of the foam: the tetrakaidecahedron. This polyhedron has 
been chosen as a result of statistical observations on the open cell  foams and because the 
tetrakaidecahedron is the space filli ng arrangement of cells of equal size with the minimal surface 
energy [1]. 
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[1] various geometric characteristics of the foam pores are necessary as well as the thermal 
conductivit ies of the composite components. To validate the obtained thermal conductivit y of the 
meso-homogeneous material, a heat transfer problem analyses has been compared for the 
homogeneous material and a volume of PCM containing open cell  foam. The geometry of the foam 
has been obtained by X tomography, in order to reproduce the realistic 3D object. A representative 
part of the foam has been selected to limit the number of elements for the meshing of foam and 
PCM. 

 
 

After validation of the homogenization model, the thermal properties have been applied to the 
numerical model representing the experimental tests. Then, the results were compared concerning 
the temperature evolution at the heater contact and the top PCM surface. This comparison is 
illustrated in figure 3. Good qualitative and quantitative agreement between these experimental and 
numerical results can be observed. 
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1. Introduction 

In the paper a new macroscopic description of quasistatic capill ary transport of liquid and gas 
in unsaturated porous materials is presented. Theoretical considerations are based on the concepts of 
multiphase continuum mechanics. The three component model of the medium is proposed, for 
which the balance equations of mass, linear momentum and internal mechanical energy are 
formulated. The new approach has been proposed for derivation of the constitutive relations, similar 
to that used in the rational thermodynamics. The constitutive relations are derived basing on the 
balance inequalit y of the internal mechanical energy formulated for the whole system and on the 
Lagrange multipliers method. 

 A new definition of the quasistatic processes is introduced allowing derivation of their 
description as a special case of the general model given by balance equations and constitutive 
relations. The obtained equations have been applied for description of no wetting liquid intrusion 
into porous sphere. Macroscopic description of such process is very useful, e.g. for interpretation of 
experimental data of mercury porosimetry and has been obtained first time. 

2. Kinematics. Basic assumptions 

It was assumed that gas and liquid filli ng rigid porous material form macroscopic continuum 
composed of three constituents: gas, mobile liquid and capill ary liquid. The division of liquid into 
two continua is justified both from kinematical and energetic point of view. The capill ary liquid is 
contained in the thin layer covering the internal surface of pores. This liquid gathers the whole 
capill ary energy of the liquid and is immoveable. It can, however, exchange the mass with the 
mobile liquid in the vicinity of meniscus surfaces. The mass exchange occurs only during the 
meniscus motion in the pore space and is described by the separate velocity field. This makes it 
possible to model the mechanism of meniscus motion in the pore space. The mobile liquid is 
located in the internal area of liquid surrounded by its internal contact surface with the skeleton and 
surfaces of meniscus. Each constituent is characterized by the mass densities and their distributions 
are defined by parameters of saturations. 

3. Mass balance equations 

The local balance equations of mass for gas, mobile and capill ary liquids take the form, 
respectively: 
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and vf  is the volume porosity, whereas gs , ms , cs  ( 1=++ cmg sss ) stand for volume saturations 

of gas, mobile and capill ary liquid in the pore space, respectively. Vectors vg and vm denote 
velocities of mobile liquid and gas, and vr represents velocity field of the meniscus in the r-space. 
Parameter r defines equili brium state of the meniscus and for the quasistatic processes can be 
interpreted as the capill ary pressure. Motion of the meniscus take place only when the parameter r 
changes. 
 For the quasistatic processes of capill ary liquid transport in unsaturated porous material 
mass balance equations take form 
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They represent balance equations of the mobile liquid and gas in the r-space and describe their 
saturations during the quasistatic processes. 

4. Constitutive relations  

 The constitutive relations for quantities describing mechanical processes in unsaturated 
porous materials are derived basing on the balance inequalit y for the mechanical internal energy of 
the three-component system. The new approach is proposed similar to that used in the rational 
thermodynamics based on the entropy inequalit y analysis and the Lagrange multipliers method. In 
this approach balance equations of the system are used as constraints imposed on independent 
constitutive quantities. It was assumed that internal energy of gas, mobile and capill ary liquids are 
unique functions of their mass densities and that saturation of capill ary liquid is a unique function of 
mobile liquid saturation.  

The obtained constitutive relations for the energy exchanged between mobile and capill ary 
liquids take the form: 
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The pressures of gas, mobile and capill ary liquids are defined by relations: 
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where ug, um, uc are mass densities of their mechanical internal energies.  
 For the velocity vr modeling mechanism of meniscus motion it is assumed that is 
proportional to the gradient of capill ary liquid saturation, 

(5)  )(),( cccr spsC gradv −=  . 
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1. Introduction 

Identification of microscopic pore geometry and macroscopic parameters of the pore space 
structure of autoclaved aerated concretes (AAC) is a very important issue in the study of their 
physical properties. The internal pore structure defines mechanical properties of AAC and plays 
important role in many physical and chemical processes occurring in such materials, e.g. in 
transport of moisture, heat and chemicals, in wave propagation and chemical reactions. 

 The ACC belong to the group of porous materials with two porosities. It means that their 
pore space is formed by pores of two classes of sizes: micropores the characteristic sizes of which 
ranges from several microns to milli meter, and nanopores of size from several nanometers to 
micron. The volumes of both types of pores are comparable.  This causes that investigations of such 
materials are very diff icult.  

The aim of the paper is to present two complementary methods of investigation of ACC pore 
space structure based on micro-computed tomography (µCT) and mercury porosimetry (MP). They 
have been used to determine micropore and nanopore porosities of ACC samples and their pore size 
distributions. Due to resolution of µCT limited to 1 micrometer this method can be used only for 
investigation of micropore space. The investigation of this space by MP method is doubtful because 
of its bubble structure that causes bottle ink effect. The MP method is useful however for 
investigation of nanopore space. It can be performed measuring disintegrated samples of ACC.       

2. Investigation of the micropore space structure. 

It is assumed that 3D scan of ACC sample form a set of voxels with various relative densities 
ρ  the frequency of occurrence of which in that set is described by normed histogram ψ(ρ). This set 
is composed of two type voxels: pore and skeleton one with various densities. Their frequency of 
occurrence are described by the probabilit y distributions ψp(ρ) and ψs(ρ), respectively. Both 
functions are defined on the whole range of voxels density values (i.e. for eight bit scan 

>∈< 255,0ρ ). This means that attachment of voxel with a given density to the subset of pore or 
skeleton type has a stochastic character, determined by the value of probabilit y. 

For the normed histogram the following model is proposed 

(1)  )()1()()( ρψρψρψ µµ
svpv ff −+=  

where µ
vf  denotes volume porosity of the micropore space. This parameter, as well  as parameters 

of probabilit y distributions )(ρψ p  and )(ρψ s , are determined using standard optimization methods 

implemented in Matlab. Then, the porosity n
vf  of the nanopore space is calculated from relation 
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where  vf stand for the total porosity of ACC sample measured by the pycnometry method.  
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Next, the obtained porosity µ
vf  is used for determination of the binarization threshold that 

allows reconstruction of the micropore space. After reconstruction we are able to determine pore 
size distribution. Each voxel of micropore space has assigned the diameter of the largest sphere 
which contains this voxel and is completely included in this space.   

3. Investigation of the nanopore space structure 

To determine directly the porosity n
vf  of the nanopore space, the following relation between 

porosities in double porous materials was applied  
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where s
vf  denotes the volume porosity of the skeleton in ACC sample. This porosity is measured 

by MP method on disintegrated ACC samples. It is possible, because two parts of the intrusion 
curve related to intrusion into intergranular pores and into nanopore space are distinctly separated. 
This allows additionall y determination of pore size distribution of nanopores. Again, relation (2) 

can be used to calculate the porosity µ
vf  of the micropore space. 

4. Results 

Both complementary methods have been applied to investigation of the pore space structure 
of four classes of AAC samples produced by SOLBET Capital Group. Part of the obtained results 
are presented in table and ill ustrated graphicall y in figure. 

 

class 
 of ACC 
 samples 

volume 
density 

ρ 
[g/cm3] 

pycnometry 
method 

µCT method MP method 

total 
porosity 

vf  

micropore 
porosity 

µ
vf  

nanopore 
porosity 

n
vf  

skeleton 
porosity 

s
vf  

nanopore 
porosity 

n
vf  

micropore 
porosity 

µ
vf  

400 0,414 0.818 0.588 0.231 0.568 0.239 0.579 
500 0,535 0.769 0.458 0.312 0.552 0.284 0.485 
600 0,585 0.749 0.534 0.215 0.518 0.270 0.479 
700 0,656 0.717 0.358 0.358 0.570 0.376 0.340 
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This presentation is concerned with the description of interfaces of thermomechanical solid bod-

ies. The description includes both the derivation of the governing equations and their approximation

using the finite element method, see [1, 2, ?].

The surface of a solid body typically exhibits properties that differ from those of the encased

bulk. These differences, caused by processes such as surface oxidation, ageing, coating, atomic

rearrangement and the termination of atomic bonds, are present in comparatively thin boundary layers.

Similarly, interfaces within the bulk can be viewed as two-sided internal surfaces. The mechanical and

thermal properties of the interface can also differ significantly from the surrounding bulk. Surface and

interface effects are especially significant for nanomaterials due to their large surface-to-volume ratio.

These effects could be modelled phenomenologically by surfaces equipped with their own energies

or, alternatively, in terms of tensorial surface stresses according to surface elasticity theory of Gurtin

& Murdoch [4].
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Figure 1. The material and spatial configurations of a continuum body, and the associated motions and defor-

mation gradients in the various parts of the body.

Consider a continuum body that takes the material configuration B0 at the time t = 0. The

boundary of the body is denoted by the surface S0 := ∂B0. The body is partitioned into two disjoint

subdomains by a two-sided interface I0. The boundary of the interface, a two-sided curve, is denoted

as C0 := ∂I0. In a similar fashion to the interface, the curve C0 partitions the surface S0 into two

open sets.

Let T = [0, T ] ⊂ R+ denote the time domain. A motion of the reference placement for a time

t ∈ T is denoted by the orientation-preserving map ϕ : B0 × T → E
3. The current placement of

the bulk associated with the motion ϕ is denoted Bt = ϕ(B0, t). The restriction of the motion ϕ

to the surface S0, interface I0 and curve C0, is denoted ϕ̂, ϕ and ϕ̃, respectively. The deformation

gradients, i.e. linear tangent maps between the line elements, in the bulk, on the surface, interface

and curve are denoted F , ̂F , F and ˜F , respectively. Throughout the presentation, quantities or
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operators corresponding to the bulk, surface, interface and curve are denoted as {•}, {•̂}, {•} and

{•̃}, respectively.

In this work we first derive the thermodynamically consistent balance equations for coherent

solid interfaces. The interface is equipped with its own thermomechanical ingredients, such as free

energy, entropy, etc. Next, the impact of the energetic interfaces on the overall response of the body

is explored by means of a series of numerical examples.
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1. Introduction

Composite construction in steel and concrete makes it possible to use with advantage the very

intrinsic mechanical properties of the constituent materials – steel in tension and concrete in compres-

sion [2], [5]. Composite beams are the most common form of composite structural element widely

used in steel frame building construction and in bridge engineering for mid-range steel bridges.

In this paper we shall present results of our theoretical studies and those of many experimental

tests we have carried out in the laboratory of our home Institute of Building Engineering [3]. The

objectives of these investigations were composite beams of steel and concrete subject to static loading,

in which the connection of steel and concrete was realized in the form of adhesively bonded joints

by both flexible and stiff structural adhesives. In the cross-section of tested composite beams we can

distinguish three components: 1 – steel girder, 2 – concrete plate (slab), 3 – adhesive joint, see fig. 1.

Figure 1. Cross-section of composite beam: 1 – steel girder, 2 – concrete plate, 3 – adhesive joint

Our aim was to take into account deformability and strength of the connection. To account

for a mutual displacement (slip and separation) between the concrete plate and the steel girder, a

four displacement field formulation was applied: w1, w2 - transverse displacement (deflection) of

the girder and plate, and u1, u2 - longitudinal displacement of the centroid of the cross-section of

girder and plate, respectively. In addition, fields of multipliers λi are used to control the irreversible

(unilateral) properties of nonlinear behaviour of steel and concrete and progressive interface failure

[1].

The evolutionary boundary value problem for the composite beam under consideration is for-

mulated as a sequence of incremental problems in time that take the form of a variational inequality

u ∈ K : a(u, v − u) ≥ 〈 f, v − u 〉 ∀ v ∈ K(1)

in which a(·, ·) is a bilinear form, u = (w1, w2, u1, u2, λi), f represents loading, and K is a convex

cone in the Cartesian product of function spaces involved [4].
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2. Experiments

In the experiments we used the modern equipment: a strength testing machine Instron 8804 with

two actuators, each of capacity ± 500 kN, a non-contact optical measuring system Aramis/Pontos,

a high-performance digital data acquisition system ESAM Traveller. Tested were the component

materials, fragments corresponding to the composite beams, and six composite beams B1 – B6 of

length 3700 mm (span 3600 mm) made from a steel IPE 240 girder and a prefabricated concrete

plate, which were bonded by different connectors including a layer of stiff or elastic adhesive. The

simply supported composite beams were subjected to a three-point bending test.

How decisive is the role of the bond of concrete and steel in the composite beam, can be best

appreciated by comparing the results of the final test for each tested beam as shown in fig. 2.

Figure 2. Force vs. sag for composite beams with different joints by the testing machine Instron 8804

3. Computational model

The computational model is based on the proposed variational inequality formulation (1), which

has been discretized by the finite element method and solved as a complementarity problem [4].

Good agreement of theory and experiment was obtained.
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1. Introduction

Anisotropic topography of surface roughness at the micro-scale may result in frictional anisotropy

at the macro-scale, i.e. in the dependence of friction coefficient on the direction of sliding, cf. [1–3].

So far, macroscopic modelling of anisotropic friction is mostly restricted to the case of orthotropic

friction, e.g., [4–8]. On the other hand, micromechanical approaches to study the phenomenon

are limited to simplified models [4, 7]. Therefore, deeper investigation is necessary to assess still-

unresolved problems, including the analysis of the influence of surface roughness on anisotropy of

friction and on the nature of sliding rules in anisotropic friction.

Micromechanical modelling seems to be a suitable tool to analyze such multi-scale structure-

property relationships, and this approach is pursued in this work: a computational contact homoge-

nization methodology is developed, and anisotropic friction in rough elastic contacts is analyzed. At

the micro-scale, the finite element method is used to solve the problem of contact interaction of elas-

tic rough surface layers. Subsequently, appropriate averaging rules are applied to derive macroscopic

contact properties.

2. Micromechanical modelling approach

In the present work, the micromechanical modelling approach presented in [9] is extended to

analyze a more general case of two rough and deformable bodies in contact. Two scales are consid-

ered. At the micro-scale, due to the interaction and deformation of surface asperities, the contact is

concentrated at small spots, so-called real contacts. Therefore, the distribution of contact traction is

highly inhomogeneous, cf. Fig. 1. At the macro-scale, the overall deformation of the contacting bod-

ies is more homogeneous, as it is determined by the slowly-varying average (macroscopic) contact

traction.

In order to determine macroscopic contact properties, finite element analysis of contact inter-

action is carried out at the scale of surface asperities. Three-dimensional finite element models of

representative samples of surface layers of the contacting bodies are constructed and their interaction

under relative sliding is simulated. Subsequent application of spatial and temporal averaging schemes

yields macroscopic response expressed in terms of the limit friction condition and sliding potential.

(a) (b)

Figure 1. FE analysis of rough surfaces in contact. A periodic unit cell of an elastic surface layer is slid against

a periodic rough rigid surface (a). Due to roughness, contact tractions are concentrated at real contacts (b).
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(a) (b)

Figure 2. Contact of a flat elastic sample with sinusoidal rigid surface. Macroscopic friction coefficient varies

with moving direction (a), and macroscopic anisotropy indicator grows with increasing normal load (b).

The analysis is performed for artificially generated rough surface topographies, and the effect

of roughness properties on the macroscopic (anisotropic) friction response is studied, cf. Fig. 2. The

influence of other problem parameters, such as the contact pressure, elastic constants of the contacting

bodies, and the size of the representative surface element, is also investigated.
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1. Aim of the paper

The object of the paper is an atomistic, molecular statics (MS) reconstruction of the Cu- α-

Al2O3 heterostructure formed by means of a pulsed laser deposition technique (PLD). The molecu-

larly reconstructed copper on sapphire substrate is then used for the examination of decohesion in the

region of the interface. For this purpose, a molecular statics nanoindentation simulation is performed.

2. Introduction

The strength of metal-ceramic interfaces is the key properties for the performance of many

devices and structural elements: microelectronic devices, thermal barrier coatings used to protect the

metallic components and metal-ceramic composites are just a few examples. Therefore, a detailed

research of the decohesion in the phase boundary is an important issue.

Applying the PLD technique, an epitaxial Cu layer has been formed on a sapphire substrate.

The obtained heterostructure has been examined by means of the High Resolution Transmission

Electron Microscopy (HRTEM) (see Figure 1). As a result, the misorientaion of Cu layer relative

to the α-Al2O3 substrate is determined and subsequently, the system of defects due to the mismatch

between the copper and sapphire is identified. Describing the interatomic interaction by the Tight

Binding Second Moment Approximation (TB-SMA) potential [2] in the formed proposed in [5], the

experimentally observed microstructure in the region of the interface is reconstructed. The obtained,

atomistic model of the copper layer is subjected to nanoindentation [1, 3, 4]. During the carried out

simulation, the displacement vs. applied force curve is registered, which enable us to identify the

decohesion in the interface region [6].

3. Problem description

In this research, copper with purity 99.999% (Kurt J. Lesker Company Ltd.) was deposited on

the (0001) α-Al2O3 surface (CrysTec GmbH) by PLD. For this purpose, a Nd:YAG laser beam with

the wavelength 355 nm, pulse duration 10 ns and the frequency repetition 10 Hz was focused on the

copper target (focal spot area 2.5 mm2, fluence 2 J/cm 2). The sapphire substrate was heated at 800 ◦C
and pressure in the chamber was set to 5x10−6Pa.

During the deposition, Cu islands are formed (Volmer-Weber growth mode), (see Figure 1). The

reason is that, copper has the higher surface energy then sapphire. The dominant orientation of Cu

islands with respect to the α-Al2O3 substrate is (111) [011]Cu||(0001)[1100]Al2O3, that is, the closed

packed planes and directions of the both crystals are parallel to each other. Additionally, the HRTEM

images enable the identification of the Cu lattice deformation resulting from the mismatch between
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Figure 1. Islands of Cu on Al2O3 substrate, HRTEM images of the Cu(top layer) Al2O3 (down layer) interface

and periodic cell of Cu-Al2O3.

the copper and sapphire. The obtained data are used for the reconstruction of the microstructure in

the interface region. For this purpose, the interatomic interaction in the Cu layer are described by

the TB-SMA potential [2] in the form determined in [5]. Performing the relaxation of the Cu layer

(Molecular Static Simulation), the final microstucture in the interface region is obtained.

The reconstructed Cu layer on the α-Al2O3 substrate is used in the molecular statics simulation

of nanoindentation in which the behaviour of the defected structure in a nonequilibrium configuration

is investigated [4]. Analyzing the obtained displacement vs. applied force curve we try to explain the

observed decohesion [6].
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The paper presents discrete element modelling of two-phase powder sintering process. Sintering

is the main stage of powder metallurgy process, which is the most common technique of fabricate

metal matrix composites with ceramic reinforcement, advanced materials with several applications.

As a technological process powder metallurgy consists of several stages including metal and ceramic

powder manufacturing, preparation of metal-ceramic powder mixture, powder pressing and sintering.

Sintering consists in consolidation of loose or weakly bonded powders at elevated temperatures, close

to the melting temperature with or without additional pressure. This is a complex process affected by

many factors. Modelling can be used to optimize and to understand better the sintering process and

improve the quality of sintered components.

Modelling of sintering process is still a challenging research task. There are different approaches

in modelling of sintering processes, ranging from continuum phenomenological models to microme-

chanical and atomistic ones. In this work, the micromechanical model of sintering was implemented

in the discrete element method framework. In the discrete element method, material is represented as

a large collection of particles interacting with one another by contact forces. It is a suitable tool to

model granular and rock materials [1]. Modelling of sintering requires introduction of the cohesive

interaction among particles representing inter-particle sintering forces. Following [2] the discrete ele-

ment model adopted in this work employs the following equation for the sintering interaction between

powder grains:

F = πγS

[

4R
(

1− cos
Ψ

2

)

+ a sin
Ψ

2

]

+
πa4

8Db

V(1)

where V is the normal relative velocity, R – the particle radius, a – the radius of the interparticle

grain boundary, Ψ – the dihedral angle, γS – the surface energy and Db – the effective grain boundary

diffusion coefficient. The first term on the right hand side of Eq. (1) represents the sintering driving

force and the second one – the viscous resistance of the material. The geometrical parameters of the

model are defined in Fig. 1.

Rysunek 1. Two-particle model of sintering.
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The model has been extended to include elastic and thermal effects. It enables modelling of a

powder metallurgy process consisting of powder compaction, sintering and cooling of the sintered

component. It allows us to study the grains during sintering and rearrangment of grains during sinter-

ing, material shrinkage and internal stresses.

The numerical model has been applied to analyze sintering behaviour of different mixtures

NiAl/Al2O3. Numerical simulations are combined with experimental studies of sintering. First, sin-

tering of each phase, NiAl and Al2O3, is studied separately at different parameters: temperature, time

and pressure. Finally, sintering of mixtures NiAl/Al2O3 will be performed at similar conditions. The

kinetics of sintering is evaluated by investigation of the bulk density change in time. The evolution of

the bulk density obtained in experimental studies is used in calibration and validation of the numerical

model. Comparison of experimental and numerical results for sintering of NiAl powder at tempera-

ture 1300◦C under pressure of 30 MPa is shown in Fig. 2a. Since experimental tests for mixtures

NiAl/Al2O3 have not been finished yet, numerical results are shown only in Fig. 2b.
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Rysunek 2. Evolution of relative density during sintering: a) numerical vs. numerical results for NiAl, b)

numerical results for NiAl, Al2O3 and mixture NiAl/Al2O3.
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1. Introduction 

The wear process on the frictional interface of two bodies in a relative sliding motion 
induces contact shape evolution. A most typical case occurs when one body plays the role of punch 
executing a relative sliding motion on a substrate body. The transient process usuall y tends to a 
steady or quasi-steady state occurring at fixed contact stress and strain distribution. 

In many practical industrial applications it is very important to predict the form of wear 
shape and contact stresses distribution. Usuall y, the simulation is performed by calculating 
incremental contact shape and pressure evolution  by numericall y integrating the  modified Archard 
wear rate rule expressed in terms of relative sliding velocity and contact pressure. However, much 
more effective procedure can be developed by postulating minimization of the contact response 
functional [1-5]. The stationary condition of the functional then provides the contact stress 
distribution compatible with the wear rate, assuring equili brium and support constraint conditions.  
     Usuall y the wear process of punch or combined wear of two bodies is accompanied by the rigid 
body motion of punch with normal and tangential velocity components. A fundamental assumption 
is now introduced, namely, in the steady state the wear rate vector is colli near with the rigid body 
wear velocity of punch.When there is no wear of punch and only the wear of substrate, the contact 
surface shape in the steady state satisfies the compatibilit y condition requiring coaxialit y of the 
wear rate vector and the elastic displacement rate difference at the contact point. 
For two bodies in the relative sliding motion 5 classes of wear problems can be distinguished for the 
fixed (in time)  loading conditions: 

  Class 1. The rigid body wear displacements are constrained by the boundary conditions 
assuring structure support reactions equili brating applied loading. The wear profile follows the 
elastic or thermal displacements and the steady state corresponds to vanishing contact pressure. 
       Class 2. The contact surface cS  evolves in time due to progressing wear process, for instance, 

in the case of spherical indenter sliding on a substrate with varying radius ( )taa =  of the contact 

zone. The quasi-steady wear state is then reached with stress distribution dependent on ( )ta . In 
fact, first the steady state distribution of contact pressure and the surface shape can then be 
specified for constant value of a. The evolution of steady states in the wear process can next be 
specified for varying contact radius.  

        Class 3. The contact surface cS  does not evolve in time and is specified. The rigid body wear 

velocity does not vanish and is compatible with the specified boundary conditions. The steady state 
is reached at which the contact stress is fixed with respect to the moving contact domain. Assuming 
the body 1B  to play the role of an indenter and the body 2B  executing sliding motion, the contact 

surface will  be fixed on 1B  and translating on 2B .  

        Class 4. The class of problems is the same as for Class 2 but body 2B  is assumed to execute  a 
periodic sliding motion of the contact surface. 
         Class 5. The class of problems is the same as for Class 3 but body 2B is asumed to execute a 

periodic sliping motion.  
The present paper is aimed to extend the previous analyses [1-5] of steady state conditions to cases 
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of periodic sliding of contacting bodies, assuming cyclic steady state conditions for the heat 
generation. In our analysis it is supposed thet the gross slip (or sliding) regime occurs between the 
bodies.  In this case the sticking zone no longer exists and the whole contact zone undergoes slip. 
The tangential stress can then be directly calculated from the contact pressure and the coeff icient of 
friction. 
 
2. Wear rule and wear rate vector 
 
The modified Archard wear rule [1] specifies the wear rate niw ,�  of the i-th body in the normal 

contact direction. Following the previous work [1, 2] it is assumed that 
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where µ  is the friction coeff icient, iii ba ,,β  are the wear parameters, τµββ u�== r
b

ii vi ,
~

 is the 

relative velocity which is specified from rigid body movement of the bodies, constrained by the 
boundary conditions. The shear stress at the contact surface is denoted by nτ  and calculated in 

terms of the contact pressure np  by using the Coulomb friction law nn pµτ = . 

2. Numerical experiments 

The specific case is related to wear analysis induced by a punch periodicall y translating on 
an elastic strip. Referring to the steady state contact pressure distributions for arbitraril y constrained 
punch and noting that the pressure at one contact edge vanishes, then the maximal pressure at the 
other edge is twice the mean pressure [5] when heat generation is absent. 

We analyse the wear process induced by the reciprocal punch translation and the heat 
generation. Our goal is to specify the contact pressure distribution and the corresponding shape of 
contact surface in the steady wear state. The stress and temperature fields are calculated in the 
iterative numerical process and the weak forms of equili brium and heat conduction equations are 
applied [3,4]. The coupled thermo-mechanical problem will  be solved by operator split  technique. 
The mechanical and thermal fields discretized by the p-version finite element approximation will  be 
specified separately in the consecutive time steps. The wear effect is calculated incrementall y by 
applying the wear rule (1). The investigated examples demonstrate that the thermal distortion 
affects essentiall y the contact shape associated with the steady state and also the contact pressure 
distribution during periodic sliding. The p-version of finite elements is used, thus assuring fast 
convergence of the numerical process and accurate specification of geometry for shape 
optimization. 
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Abstract 

The evaluation of mechanical properties of heterogeneous materials presents multidisciplinary 
task where the contribution of microstructural effects is of major important. Direct simulating of the 
material structures as heterogeneous continuum is inappropriate for several reasons, because it re-
quires a large CPU time and did not improve the understanding of the role of microstructure. Re-
cently, multi-scale approach became useful simulating technique, where macroscopic mechanical 
properties of the heterogeneous solids are defined in terms of grain properties and their interactions.  

Among the numerical simulation methods, the Discrete Element Method (DEM), introduced 
by Cundall  and Strack [1] has become the most useful tool. Evaluation of the contact behaviour be-
tween particles is decisive in the DEM. Originall y, most of the DEM applications are aimed to sim-
ulate non-cohesive granular materials with unilateral repulsive normal contact. 

Presented report addresses the normal contact between two elastic relatively stiff  spherical 
particles interacting via weaker interface material (Fig. 1a). The problem is considered analyticall y 
and by applying the Finite Element Method (FEM). The 3D FE comprises two spheres bonded by 
the three dimensional cylinder. The above approach is aimed for development of the DEM. Two 
types of the interface material models were considered. The purely elastic material was examined in 
the first series of samples and comprising wide range of various parameters. The analytical model 
comprising combination of three sequential and parallel bonding springs (Fig. 1b) was developed.  

The viscoelastic interface material between two contacting particles was examined in the se-
cond series of samples. Viscoelastic properties of the solid obey of the Maxwell  model (Fig. 1c), 
while relaxation was described via Prony series [2]. 
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Fig. 1. Modified normal contact model: a) geometry; b) bond model for elastic interface ± springs 

system; c) bond model for viscoelastic interface ± springs-dashpots system 
 

Variation of the linear bond stiffness parameters against relative elasticity modulus 
E* = Eij/Eb il lustrating the weakening of the interface is given in Fig. 2a in logarithmic scale. Here, 
full interface with the data value E*  =  5 corresponds to the heterogeneous case of granite grains 

a) b) 

c) 
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embedded into cement paste, while the data value E*  approximately equal to 10000 corresponds to 
the heterogeneous case of granite grains embedded into asphalt. Dashed horizontal line shows con-
tribution of the stiffness of particles ki and kj which are independent on interface. The contribution of 
interface material expressed in terms of stiffness of the interface layer kc and the parallel bond Kbn,ij 
exponentiall y decay with decay of the interface properties. The main observation is that resultant 
stiffness of the sequentiall y connected springs Kijc (thin line) and total stiffness Kn,ij (bold line) con-
verges to the stiffness of the interface layer kc. This model as the FEM shows, that deformability of 
particles is negligibly small  and could be neglected in the computational models with the relatively 
weak interface bonds. Consequently, particles could be presented by rigid surface, thereby, simpli-
fying computational model and reducing the size of the model. 
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Fig. 2. Illustration of simulation results: a) variation of separate bond stiffness parameters with 

weakening of the interface; b) comparison calculation models for weaker interface: 1 ± FE linear 
model, 2 ± FE geometricall y nonlinear model 

 
Comparison of employed elastic and visco-elastic models for the case of weak interface rele-

vant to asphalt in terms of relative stiffness k is il lustrated by column-diagram given in Fig. 2b. 
Here columns 1 and 2 il lustrate FE results. Results show that this proposed model fails however for 
the case relatively weaker interface bonds. The above model of contacting particles with the parallel 
bond is suitable for the evaluation of contact with thick interface, for the relatively strong bonds. 
Therefore will  be offered corrected normal contact model for weaker interface bonds. 

It was found that for weaker interface the FE nonlinear model with large deflection should be 
applied, because it gives higher accuracy of contact relative stiffness compared with the modified 
analytical calculation contact model. 

Obtained results by FE model clearly demonstrate influence of the viscosity of interface solid. 
For normal displacement of particles equal to 6.6% of particle radius R, yields reduction of the in-
teraction force up to 56.7% when compared to purely elastic properties. 

 
References 
 
[1] Cundall  P. A. and Struck O. D. L (1979). A discrete numerical model for granular asseblies. 

Geotechnique 29(1): 45-75. 
[2] Masad E., Huang C., W., Airey G., Muliana A. (2008). Nonlinear viscoelastic analysis of 

unaged and aged asphalt binders. Construction and Building Materials 22(11): 2170-2179. 

E*  

ki, kj 

 kc 

Kn,ij  

 

Kijc 

  Kbn,ij  

 

concrete asphalt 
a) b) 

28.8 

19.6 

26.5 

18.0 



212 38th Solid Mechanics Conference, Warsaw, Aug. 27–31, 2012

CONSTRUCTION OF STATISTICALLY SIMILAR RVEs FOR 3D MICROSTRUCTURES

L. Scheunemann, J. Schröder, D. Balzani and D. Brands
Instituteof Mechanics, University Duisburg-Essen, Essen, Germany

1. Motivation

For many materialsused in advanced engineeringapplications, themacroscopic mechanical re-
sponse is governed by the characteristic microstructureof thematerial, which should therefore be in-
corporated in numerical computations. A suitabletool for thesimulation of such micro-heterogeneous
materials is the FE2 method, see e.g. [3] and [5]. In this context a microscopic boundary valueprob-
lem is solved at each integration point of the macroscopic boundary value problem based on the
discretization of a representative volume element (RVE). A drawback of this approach is the high
computationtime and highamount of memory required when applyingit to complex microstructures.
The definition of statistically similar RVEs (SSRVEs), which are characterized by a reduced com-
plexity compared with real microstructures lead to more efficient calculations. In 2D the construction
of SSRVEs proves to besuccessful in aseries of numerical examples, cf. [1], [4].

Figure 1. Real DP-steel microstructure (in coorporation with D. Raabe, Max-Planck-Institut für Eisen-
forschung, Düsseldorf) and two SSRVEswith two and five elli psoidal inclusions.

2. Construction of SSRVEs

We propose amethod to construct 3D SSRVEs based on the minimization of a least-square
functional taking into account thedifferencesof suitablestatistical measurescharacterizing the inclu-
sion morphology of a given real microstructure. As statistical measures we use the volume fraction
(PV ), spectral density (PSD) and lineal path function (PLP ), which e.g. isgiven by

(1) PI
LP (m, k, l) =

1

NxNyNz

Nx
∑

p=1

Ny
∑

q=1

Nz
∑

o=1

χI(−−→x1x2)

describing the probabilit y of a line segment −−→x1x2 to be located completely in the inclusion phase I,
see[2]. Therein theindicator functionχI isequal to oneif thelinesegment−−→x1x2 isin phaseI andzero
else. Nx, Ny and Nz denote the number of voxels considered in the three coordinate axis directions.
The least-square functional

(2) L(γ) =
∑

i

ωi

(

Preal
i − PSSRV E

i (γ)
)2

→ min
γ
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is minimized by an optimization procedure, cf. [1], where γ represents a suitable parametrization
of the inclusion phase morphology. Several types of SSRVEs are considered, which differ in the
number of elli psoidal inclusions representing the inclusion phase of the microstructure. We focus
on the construction of SSRVEs for a real microstructure of a DP-steel obtained from measurements
by Electron Backscatter Diffraction (EBSD) combined with a Focused Ion Beam (FIB), cf. [6]. A
DP-steel microstructure and two correspondingSSRVEs are depicted in Fig. 1.
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Figure 2. Comparison of mechanical response in uniaxial tension testsbased onthe target structure and ontwo
different SSRVEs.

A first check of the quality of the methodis performed by comparing the mechanical response
of the real EBSD microstructure with the ones of the SSRVEs in virtual experiments. For uniaxial
tension in x- and z-direction it turns out that the mechanical behavior is comparable, see Fig. 2.
Further numerical examplesarediscussed to demonstrate theperformanceof themethod.
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TWO-STEP HOMOGENIZATION SIMULATION 
OF POLYCRYSTALLINE PIEZOELECTRIC MATERIALS 

 
 

Y. Uetsuji1, H. Kuramae1 and K. Tsuchiya2 
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2 Tokai University, Hiratsuka, Japan 
 
 

1. Introduction 

Piezoelectric materials generall y consist of many grains at a mesoscale and domains at a 
microscale. Each domain shows strong anisotropy according to the asymmetric crystal structure. The 
macroscopic material properties of polycrystalli ne piezoelectric materials have a large dependence on 
these microscopic crystal morphology. Therefore, it is important to understand the effect of 
multidomain and multigrain structures on macroscopic material properties. In this paper, a multiscale 
modeling of multigrain and multidomain structures was presented for piezoelectric materials. 

2. Computational scheme 

Figure 1 shows a multiscale modeling of multigrain and multidomain structures in piezoelectric 
materials. The microstructure consists of intragranular domains and the mesostructure is an aggregate 
of random-orientating grains. The asymptotic homogenization theory was employed for bridging 
three scales among micro, meso and macro structures. Then multiscale formulations of a coupled 
problem which involves mechanical displacement and electric potential were discretized and solved 
by finite element method [1]. In addition EBSD-measured crystal orientations [2] were introduced 
into multigrain mesostructure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1  Multiscale modeling of multigrain and multidomain structures in piezoelectric materials. 

 

3. Results and discussions 

The first step is the homogenization of multidomain microstructure. A typical microstructure, a 
dual-domain structure consisting of 0 and 180 degree domains, was modeled. The material properties 
of a BaTiO3 single crystal was inputted into each domain. The homogenized material properties were 
estimated as changing the volume fraction of 0 degree domain from 50% to 100%. In case of 
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piezoelectric strain constants, the computation indicated their homogenized properties increase 
linearly from zero at unpoled state to the maximum at full -poled state. On the other hand, it was 
recognized that the some specific components of dielectric constants and elastic compliance 
constants don’ t satisfy the law of mixture and the piezoelectric effect makes their components change 
nonlinearly according to volume fraction of 0 degree domains. 

The next step is the homogenization of multigrain mesostructure. A realistic three-dimensional 
model of a BaTiO3 polycrystal, which was constructed by repeating EBSD measurement, was applied 
to mesostructure. The mean diameter of a grain was approximately 6.71 µm. Then the above 
homogenized material properties of multidomain structures were inputted into every grain of the 
mesostructure. Figures 2-4 shows the relation between the macrostructural homogenized material 
property and the volume fraction. Piezoelectric strain constants increase linearly, but all  other 
components of dielectric and elastic compliance constants vary nonlinearly according to volume 
fraction of domains. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2   Relation between homogenized piezoelectric  

strain constant of multigrain structure and 
volume fraction of 0idomain. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3   Relation between homogenized dielectric  

constant of multigrain structure and volume 
fraction of 0idomain. 

 

 
 
 
 
 
 
 
 
 
 
 
 

(a) Normal components 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Shearing components 
Figure 4   Relation between homogenized elastic 
                compliance constant of multigrain structure  

and volume fraction of 0idomain. 
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CONCURRENCE OF THE MICRO-SCALE CALCULATION AND INVERSE

IDENTIFICATION OF PARAMETERS USED FOR MODELLING ACOUSTICS

OF POROUS MEDIA

T. G. Zieliński

Institute of Fundamental Technological Research, Warsaw, Poland

1. Introduction

There are several widely-used acoustic models of porous media, starting from that simple,

purely phenomenological, model proposed by Delany and Bazely, and finishing with semi-pheno-

menological propositions of Johnson et al., combined with the ones of Champoux and Allard, with

some important variations proposed by Pride, Lafarge, and others [1]. All these models use some av-

erage macroscopic parameters, namely: the total porosity and flow resistivity (or permeability) – for

the Delany-Bazely model – which are supplemented by the average tortuosity of pores and their char-

acteristic dimensions – in the case of more advanced semi-phenomenological models. These models

allow to describe the acoustic wave propagation in porous media in a wide frequency range, provided

that the skeleton is rigid. However, using some formulas derived for these models with the Biot’s the-

ory of poroelasticity permits to describe correctly sound propagation in soft porous materials. Thus,

the determination of the above-mentioned parameters is very important. For direct, experimental mea-

surements specialistic equipment is required, different for various parameters. Therefore, an inverse

identification based on curves of, for example, acoustic impedance or absorption (measured for sam-

ples of known thickness) can be used to estimate the model parameters. In this work, it will be shown

that knowledge of micro-structural geometry of porous medium is very helpful to validate correct

estimation. Moreover, a periodic microscopic cell consisting of a few pores representing an average

morphology of porous ceramics is proposed to serve for numerical analyses to estimate permeability

parameters. The concurrence of such micro-scale derivation and inverse identification is discussed.

2. Inverse identification and microstructural analysis

Samples of porous ceramics Al2O3, with the known total porosity of 90%, are examined in the

impedance tube using the transfer function method, in the frequency range from 500 Hz to 6.4 kHz.

Experimentally-determined curves of acoustic impedance and absorption are then used for an inverse

identification of the remaining model parameters, namely: tortuosity α, viscous and thermal perme-

abilities, k0 and k′

0
, and two characteristic lengths – for viscous and thermal effects, Λ and Λ′. To this

end, five dimensionless parameters, p1,. . . ,p5, are defined in some relation with the model parameters

and then, an optimization procedure with appropriate constraints is carried out, in order to match the

curves measured experimentally with the ones calculated from the equations of the Johnson-Allard

model [1]. As a matter of fact, some experimental data are used for the determination of parameters

while the other data – obtained for another sample of the same porous ceramics, yet having different

height – serve for the validation purposes. The absorption curves, obtained for two samples of differ-

ent height, namely, h = 18mm and h = 24mm, are shown in Figure 1(a). Figure 1(b) presents the

identified values of the five dimensionless parameters, whereas the corresponding initial and identi-

fied values of model parameters are given in Table 1. It is observed that the identified characteristic

length for thermal effects corresponds very well to the average radius of pores, whereas the charac-

teristic length for viscous forces is similar with the average radius of “windows” linking the pores (cf.

also 2Λ = 127µm and 2Λ′ = 581µm from Table 1 with, respectively: 113µm and 529 µm found

in Table 1 in [2]). This is a very important agreement which validates the results of identification.
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ROTATIONAL MOTION OF A STOCHASTIC NON LINEAR MATHIEU EQUATION

UNDER WHITE NOISE AND NARROWBAND EXCITATION

D. Yurchenko1, A. Naess2 and P. Alevras1

1Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK
2Department of Mathematical Sciences, NTNU, Trondheim, Norway

1. Introduction

This paper considers the stochastic dynamics of a non-linear Mathieu equation which describes

the motion of a linearly damped mathematical pendulum with a vertically excited suspension point

also known as parametric excitation. The previous system is governed by the following equation:

(1) θ̈ + 2αθ̇ +

[

g

l
+

¨f(t)

l

]

sin θ = 0

where θ is the angle of inclination, α - the damping coeffecient, l - the length of the pendulum and

most studies consider the excitation force to be perfectly harmonic, f(t) = A cos(ωt).
It has been proved by numerous studies [1, 2, 3] that system (1) is capable of establishing

different types of motion from small oscillations to pure rotations and chaos. Different numerical

techniques, such as bifurcation analysis, Lyapunov exponent, etc., have been used to identify the

instability domains of (1) corresponding to rotational and chaotic motion and especially the rotational

subdomains. Such an interest has been motivated by the idea of using the parametrically excited

system for designing of a Wave Energy Converter (WEC) [2, 3] which can extract energy out of the

rotating pendulum, while ocean waves provide a vertical excitation of the pendulum suspension point.

Despite the interesting idea, it should be noted that ocean waves are not perfectly periodic and should

be modeled as a narrowband process [4]. Here, two types of modeling options are considered. First,

random phase modulation proposed by Wedig [5] reading:

(2) f(t) = A cos q(t), q̇ =
ω

Ω
+ σζ(t), E[ζ(t)] = 0, E[ζ(t)ζ(t+ τ)] = Dδ(τ)

where ζ(t) denotes the stationary Gaussian white noise with a constant intensity D = σ2 and E[·]

is the operation of expectation. Thus, in view of the potential application for energy harvesting, first

approach leads to understanding the behavior of the system (1) after a proper non-dimensionless time

is introduced:

(3) θ′′ + γθ′ + [1 + λ cos q(t)] sin θ = 0, γ =
2α

Ω
, λ =

A

l

with q(t) defined in (2). The second one is described simply as ¨f(t) = ζ(t) resulting in:

(4) θ̈ + 2αθ̇ +

[

g

l
+

ζ(t)

l

]

sin θ = 0

2. Path integration technique

For the analysis of the aforementioned systems, a numerical approach was adapted based on the

path integration (PI) technique [6]. The PI method constructs the joint response probability density

function (PDF) taking advantage of and requiring the stochastic process to be Markovian. Particularly
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Figure 1. (a) Parameter space plot for random phase modulation and values of γ=0.3, D = 0.005, x(0) =

0.01π; (b) PDF for ν = 1.8, λ=4.0;

for the three dimensional case, the joint PDF at time t is calculated based on the one at time t′ = t−∆t
as from the Chapman-Kolmogorov equation:

(5) p(x, y, q, t) =

∞
∫

−∞

∞
∫

−∞

π
∫

−π

p(x, y, q, t|x′, y′, q′, t′)p(x′, y′, q′, t′)dq′dx′dy′.

where p(x, y, q, t|x′, y′, q′, t′) will be referred to as the transition probability density function (TPD).

The evalution of the TPD stems from noticing its Gaussian nature since ζ(t) is Gaussian white noise

[6].

3. Results and conclusions

In this paper, identification of the rotational instability subdomains was conducted by building

parameter space plots (fig. 1(a)) characterising the probability of rotational motion through the re-

sponse PDF (fig. 1(b)). Different initial conditions, damping coefficients and noise intensities were

studied regarding their affect on rotational motion. Numerical results showed that the initial condi-

tions selection had no influence on the resulting motion of the system (1), unlike the behaviour of the

determenistic one. As for the damping term, bigger values would help maintain the rotational motion

robustness while increasing noise intensity tends to eliminate rotational subdomains.
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GENERALIZED MOMENT EQUATIONS TECHNIQUE FOR DYNAMIC SYSTEMS
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1. Introduction

If the excitation is a non-Poisson (e.g. renewal) impulse process, the state vector of the dy-

namic system is not a Markov process. The conversion of the original non-Markov pulse problem

into a Markov one is in some cases possible owing to the introduction of auxiliary state variables in

form of pure-jump stochastic processes. If auxiliary state variables are governed by stochastic differ-

ential equations driven by a single Poisson process or by independent Poisson processes, the original

state vector augmented by those auxiliary variables becomes a non-diffusive, Poisson-driven Markov

process. Then the differential equations for moments may be derived. These pure-jump stochas-

tic processes have to be explicitly formulated either as some transformations of a Poisson counting

process [1, 2], or directly with the aid of the stochastic differential equation [3, 4]. The explicitly

introduced, Poisson-driven, pure-jump stochastic processes are characterized by a chain of Markov

states. Consequently the original state variables and the states of the auxiliary pure-jump stochastic

process are jointly Markovian and the problem is characterized by a mixed-type joint probability den-

sity - discrete distribution function. Such a function is governed by the forward integro-differential

Chapman-Kolmogorov equation. The moments are defined as integrals with respect to the mixed-

type, probability density - discrete distribution function. Based on the forward integro-differential

Chapman-Kolmogorov equation the generating differential equation for moments is obtained. An

illustrating example is also given.

2. Statement of the problem

A general case of a non-linear oscillator under an external or parametric impulse process exci-

tation is considered. A random impulse process excitation is defined as

F (t) =
N (t)
∑

i=1

Piδ(t − ti),(1)

where the occurrence times ti of impulses are driven by a non-Poisson counting process N (t), giving

the number of counts in the time interval [0, t), i.e. excluding the one that possibly occurs at the

time t. The impulses magnitudes Pi are assumed to be identically distributed, independent random

variables.

An auxiliary, pure-jump stochastic process is introduced, characterized by a number of Markov

states [5]. The jumps are defined in such a way that the actual impulse (i.e. the jump in the velocity

response Z2(t)) only occurs if there is a jump between some particular Markov states. Then the

problem described by the original state variables of the dynamic system and by the Markov states of

the auxiliary jump process is jointly Markovian. Accordingly, the response probability distribution is

characterized by a joint probability density - discrete distribution function qj(z1, z2, t) of the response

state variables - the displacement Z1(t) and the velocity Z2(t) and of m states S(t) of a pertinent

Markov chain, defined as [5]

qj(z1, z2, t)dz1dz2 = Pr{Z1(t) ∈ (z1, z1 + dz1) ∧ Z2(t) ∈ (z2, z2 + dz2) ∧ S(t) = j},(2)



Session: Nonlinear and Stochastic Dynamics 223

where j = 1, 2, ...,m. The fundamental equation for such a continuous-jump Markov process is the

general forward integro-differential Chapman-Kolmogorov equation [5, 6]

∂

∂t
qj(z, t) = −

2
∑

r=1

∂

∂zr

[

cr(z, t)qj(z, t)
]

+

m
∑

i=1

∞
∫

−∞

[

J{Z}(z, j|x, i, t)qi(x, t) − J{Z}(x, i|z, j, t)qj(z, t)
]

dx

(3)

where cr(z, t) are the drift terms of the equation of motion written down in the state space form and

J{Z}(z, j|x, i, t) is the jump probability intensity function [5, 6] which must be determined for the

pertinent chain of Markov states.

The moments are defined as

Ej

[

V (Z(t), t)
]

=

∞
∫

−∞

V (z(t), t)qj(z, t)dz, j = 1, 2, ...,m.(4)

The generating equation for moments is obtained, with the aid of the forward integro-differential

Chapman-Kolmogorov equation, as

d

dt
Ej

[

V (Z(t), t)
]

=
∂

∂t

∞
∫

−∞

V (z(t), t)qj(z, t)dz =

Ej

[

∂

∂t
V (Z(t), t)

]

+
2

∑

r=1

Ej

[

∂V (Z(t), t)

∂Zr

cr(Z(t), t)

]

+

m
∑

i=1

∞
∫

−∞

∞
∫

−∞

[

V (y(t), t)J{Z}(y, j|z, i, t)qi(z, t) − V (z(t), t)J{Z}(y, i|z, j, t)qj(z, t)
]

dydz.

(5)
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1. Introduction 

Due to the recent intensive development of transportation, new construction possibiliti es and 
better methods for prediction of vibrations impact on an environment are needed. Experimental 
studies show that nonlinear approaches are better for modelli ng of real behaviour of existing 
structures subject to dynamic excitations, compared to linear models. One can recognize a lack of 
analytical methods for analysis of nonlinear systems. For moving load problems, one finds a 
number of published results involving numerical computations. Few analytical solutions are 
obtained for a dynamic response of a beam resting on a nonlinear foundation [1-3]. These solutions 
are usuall y based on perturbation methods and can give results insuff iciently exact for parametric 
analysis. A method using wavelet expansion of functions combined with the Adomian’s 
decomposition [4] is applied in this paper to the model consisting of the Timoshenko beam resting 
on a nonlinear viscoelastic foundation and subjected to a moving load representing a train 
movement. 

2. Model formulation and semi-analytical solution 

The following equations for a homogeneous infinite Timoshenko beam resting on a nonlinear 
viscoelastic foundation are considered: 
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where W  is the transverse displacement, Ψ  is the angular rotation of the cross-section, x  is the 
space coordinate in a direction along the beam, t  represents the time and the parameters are: the 
mass per unit length Amb ρ= , the viscous damping of foundation dC , the shear stiffness AGS κ= , 

the mass moment of inertia IJ ρ= , the beam flexural rigidity EI , the Young’s modulus E , the 
moment of inertia I , the shear modulus G , the mass density ρ , the cross-section area A  and the 
shear correction factor κ . The boundary conditions should reflect the fact that the displacement, the 
bending moment, the shear force and the slope of the beam curvature tend to zero. 
 The term )(Wf  represents the nonlinear restoration [3]: 

(2) )()( WNkWkWf NL +=  

where Lk  is the linear coeff icient of foundation stiffness and Nk  is a nonlinear part of foundation 

stiffness. The function )(WN  describes the form of the nonlinear factor, usuall y taken as 
3)( WWN =  [1,2]. A more general form of function )(WN  is considered in present paper. It is 

assumed that the function f  is analytic and therefore it can be expanded by the Taylor series [3]. 
The moving force is modelled as a finite sum of loads harmonicall y varying in time and 

distributed on separated intervals: 
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where (.)H , a2 , aP 2/0 , V , Ω=Ω fπ2 , L  and s are the Heaviside function, the span of load, the 

amplitude of the load, the velocity and the frequency of the moving load, a number of separated 
impulses and the distance between them, respectively. 

A special method using a wavelet expansion of functions combined with the Adomian’s 
decomposition is adopted for solving the investigated model [4]. The usefulness of the wavelet-
based approximation for the analysis of various linear and stochastic problems was proved before 
[4,5]. An expansion of functions using the wavelet filter of coiflet type )( jp  is applied for solution: 
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where pk  and pN  are the parameters associated with a specific set of coiflets )( jp  and f
~

 denotes 

the Fourier transform of function f . A generali zed coiflet filter of length 8 is used for the 
improvement of the eff iciency of the method, instead of the classical filter of length 18 applied in 
past papers [4,5]. The Adomian’s decomposition assumes a form of solution represented by a series 
with one linear term and an infinite number of unknown functions related to the nonlinear part, 
which must be determined in order to solve the problem: 
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The nonlinear term )(WN  is represented by a sum of Adomian polynomials jQ  [3]: 
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For a derivation of terms jW  and jΨ  (Eqs. 5) the coiflet-based approximation (Eq. 4) is used.  

3. Conclusions 

The developed method allows to alleviate diff iculties associated with numerical computations 
and gives possibilit y of effective parametric studies. The obtained semi-analytical solution enables 
discussion regarding the influence of the considered nonlinearity on the beam response. Numerical 
examples showing the system behaviour for various parameters are presented. 
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1. Introduction

The purpose of the presentation is to summarize our recent results regarding the formulation

of shell elements based on the Hu-Washizu (HW) functional with rotational degrees of freedom,

[1, 2, 3, 4]. Several numerical examples will illustrate such aspects of their performance as: accuracy,

radius of convergence, required number of iterations of the Newton method or the arc-length method

and time of computations. Some examples enabling comparisons with the ’solid-shell’ element based

on the HW functional will be provided.

2. HW shell element with rotational degrees of freedom

The formulation of our four-node shell element with rotational degrees of freedom based on

the Hu-Washizu (HW) functional is described in detail in [1]. It is an enhanced element with six

dofs/node, enabling finite (unrestricted) rotations, and developed for Green strain. The drilling rota-

tion is included through the drilling Rotation Constraint equation. The key features of the approach

are as follows.

1. The shell HW functional is derived from the shell potential energy functional, which is an alter-

native to the derivation from the three-dimensional HW functional. This method is more versatile

as it enables the derivation of the so-called partial HW functionals, with different treatment of the

bending/twisting part and the transverse shear part of strain energy.

2. For the membrane part of HW shell elements, a 7-parameter stress, a 9-parameter strain and a

2-parameter EADG enhancement are selected as optimal. The assumed representations of stress and

strain are defined in skew coordinates in the natural basis at the element’s center. This improves ac-

curacy and has positive theoretical consequences.

3. The drilling Rotation Constraint equation is treated by the Perturbed Lagrange method. The faulty

term resulting from the equal-order approximations of displacements and the drilling rotation is elim-

inated and one spurious mode is stabilized using the gamma method. The proposed formulation

is insensitive to the element’s distortions and yields a large radius of convergence in the examples

involving in-plane bending.

The performance of 4 four-node shell HW elements, differing in formulation of the bend-

ing/twisting and the transverse shear parts, is analyzed on several numerical examples. The element

with 29 parameters (HW29) is selected as the best performer.

3. Example: quarter of orthotropic hemisphere

A quarter of the hemispherical shell with an 18o hole is loaded by two external forces, see

Fig.1a. The same boundary conditions are used as for an isotropic material, which for an orthotropic

material do not preserve symmetry of deformation. The mesh consists of 16 × 16 elements, and the

4-node element HW29 with rotational dofs and the 8-node ’solid-shell’ element SS HW47 are used.

The material is the carbon T300/epoxy composite, and the orthotropic material constants are as

follows: E11 = 58.9, E22 = 52.1, E33 = 11.2, ν12 = 0.048, ν13 = 0.442, ν23 = 0.46, G12 = 4.01,
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G13 = 3.87, G23 = 3.71. The material orientation is defined using the spherical coordinate system

and the material direction vector 1 is tangent to the parallels of latitude.

The nonlinear analyzes are performed using the arc-length method for P = 1/105 and the

results are shown in Fig.1b. The element HW29 crashes at the inward displacement equal to 13.5,

while the ’solid-shell’ elements SS HW47 performs up to 15, for which a very distorted shape of is

obtained. Up to the inward displacement equal to 10, both these classes of elements yield an almost

identical deflection, despite the fact that they use different types of orthotropy; the first one uses

full orthotropy (9 constants) while the other uses the orthotropy modified by the Zero-Normal-Stress

condition (6 constants).
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Figure 1. Quarter of hemispherical shell. a) Geometry, b) Nonlinear displacements for various HW elements.
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The present paper is devoted to investigation of initial-boundary value problem corresponding 
to Lord-Shulman dynamical linear three-dimensional model of thermoelastic bodies, and to 
construction and justification of hierarchical two-dimensional models for thermoelastic shells in 
corresponding Sobolev spaces. We consider Lord-Shulman linear three-dimensional model for 
anisotropic homogeneous thermoelastic bodies, which was obtained by H. Lord and Y. Shulman [1] 
to eliminate shortcomings of the classical thermoelasticity, such as infini te velocity of thermoelastic 
disturbances that is inconsistent with the real physical properties of elastic bodies. In Lord-Shulman 
model instead of the classical Fourier law of heat conduction Maxwell -Cattaneo law was used, 
which is a generalization of Fourier law and depend on one relaxation time parameter. Hence, the 
equation corresponding to the temperature field involve second order derivatives of temperature and 
divergence of displacement vector-function with respect to the time variable. The problem of 
propagation of a thermoelastic wave was studied and domain of influence result for Lord-Shulman 
model in spaces of classical smooth enough functions was obtained in [2], and problems of steady 
oscillations and pseudo-oscillations were investigated in [3] applying methods of the theory of 
integral equations. 

We consider variation formulation of initial-boundary value problem in differential form 
corresponding to Lord-Shulman dynamical nonclassical three-dimensional model and show their 
equivalence in the spaces of smooth enough functions. On basis of variation formulation we define 
spaces of vector-valued distributions in which the initial-boundary value problem corresponding to 
Lord-Shulman model is well -posed, and applying suitable a priori estimates we prove the existence 
and uniqueness of solution of the three-dimensional initial-boundary value problem. In addition, we 
obtain energetic identity, which permits one to prove continuous dependence of solution on initial 
and boundary conditions and densities of body forces and heat sources.  

Since numerical solution of initial-boundary value problem corresponding to Lord-Shulman 
three-dimensional model requires complicated algorithms, it is important to construct approximate 
two-dimensional models for three-dimensional problem taking into account geometric shape of 
thermoelastic body. In the framework of Lord-Shulman nonclassical theory of elasticity we 
consider general thermoelastic shell with variable thickness in curvilinear coordinates, which may 
vanish on a part of the lateral surface, and construct its two-dimensional hierarchical models 
applying spectral method, which is a generalization of the dimensional reduction method suggested 
by I. Vekua [4, 5] in the theory of elasticity for plates with variable thickness and shells. To 
construct two-dimensional models of plate I. Vekua considered differential formulation of the three-
dimensional initial-boundary value problem and approximating components of the displacement 
vector-function by partial sums of orthogonal Fourier-Legendre series with respect to the variable 
of plate thickness a hierarchy of initial-boundary value problems defined on two-dimensional space 
domain was obtained. Note that the classical Kirchhoff-Love and Reissner-Mindlin models can be 
incorporated into the hierarchy obtained by I. Vekua so that it can be considered as an extension of 
the frequently used engineering plate models. Static two-dimensional models constructed by I. 
Vekua for thin shallow shells first were investigated in Sobolev spaces in [6] and for homogenous 
isotropic plate the rate of approximation of the exact solution of the three-dimensional problem by 
the vector-functions of three space variables restored from the solutions of the reduced two-
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dimensional problems in the spaces of classical smooth functions was estimated in [7]. Later on, 
various two-dimensional and one-dimensional models were constructed and investigated for 
problems of the theory of elasticity and mathematical physics applying I. Vekua's reduction method 
and its generalizations (see [8-10] and references given therein). 

To obtain a hierarchy of two-dimensional models of thermoelastic shell we construct 
sequences of subspaces of the spaces corresponding to the original three-dimensional initial-
boundary value problem, which consist of vector-functions whose components are polynomials 
with respect to the variable of shell thickness. Note that the constructed subspaces are weighted 
Sobolev spaces of function defined in two-dimensional Lipschitz domain, when the thickness of the 
shell vanishes on a part of the boundary. Projecting the original three-dimensional problem on these 
subspaces we construct a hierarchy of dynamical two-dimensional models, when surface force and 
heat flux densities are given along the face surfaces and along a part of the lateral surface, and the 
shell is clamped and the temperature vanishes along the remaining part of the boundary. We prove 
the existence and uniqueness of solution of two-dimensional initial-boundary value problem in 
suitable spaces of vector-valued distributions. We also obtain energetic identity, which permits one 
to show continuous dependence of solution on given functions. We investigate relationship between 
the hierarchy of dynamical two-dimensional models of anisotropic homogeneous thermoelastic 
shells obtained from Lord-Shulman model and original three-dimensional initial-boundary value 
problem and prove that the sequence of vector-functions of three space variables reconstructed from 
solutions of the reduced problems converges in corresponding Sobolev spaces pointwise with 
respect to the time variable to the solution of the three-dimensional initial-boundary value problem 
and under additional regularity conditions we estimate the rate of convergence. 
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1. Introduction 

The presence of a hole in an otherwise uniformly compressed composite plane sheet generall y 
causes a stress concentration and a reduction of the resistance to the loss of a global stabilit y. 
However, cut - outs of a different shapes have to be made into laminates for practical reasons. This 
problem is extensively researched and discussed in the literature [2] - [6].  

In this work the influence of a holes of an arbitrary shape on the global stabilit y of a laminate 
plates is investigated. In the Fig. 1. there is shown a multil ayered composite structure in the 
Cartesian co - ordinate system. The structure is made of two parts: the host plate � that occupies the 
volume �=�p – �h, where �p is the volume of the composite plate and �h denotes the volume of 
the arbitrary shape hole. The considered plates consists of N = 30 layers and the feasible 
configurations are as follows: [0°]30, [±45°]15 and [90°]30. Material of fiber are highly anisotropic 
mechanics properties. It means that the young modulus E1 (fiber direction) is greater than E2 
(direction perpendicular to the fiber). The compressive loading of the plate is assumed to be in the 
form of uniform stress boundary condition on each edges. Moreover, the plate is simply supported. 

 

 
 

Fig. 1. Laminated composite rectangular plate with a circular hole. 

2. Arbitrary shape of openings 

The geometrical representation of a different shape cutouts in the XY-plane is presented by 
Abuelfoutouh [1] as simple equations: 

(1)   ( ) ( )( )ϕϕλ nwx coscos += , ( ) ( )( )ϕϕλ nwcy sinsin −= . 

The parameter �, which is a positive and real number, controls the size of the cutout. The integer n 
and the parameter c determines the shape of cutout. The parameter w is the bluntness factor which 
changes the radius of curvature at the corner of the cutout. For example, for w = 0, n = 1, c =1 the 
circular shape can be obtained, w = 0.1, n = 3, c =1 - the square shape and w = 0.25, n = 2, c =1 - 
the triangular shape. 

3. Method of the analysis and results 

In order to obtain the buckling mode and corresponding value of the criti cal load multiplier 
for the different shape and size of the cut - outs the numerical analysis was performed. The 
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calculations were made with use of commercial finite element system ANSYS12. We use the shell  
elements, namely multil ayered shell  element SHELL181. The maximal size of the cut - outs is 
limited by the stress concentration, which can cause the composite damage in first ply failure (FPF) 
sense. Below in the Fig. 2 shown the results of calculation for arbitrary chosen shape and load case 
are shown. 
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Fig. 2. Critical load multiplier for a) rectangular plate with circular hole k = 1, b) square plate 

with elli psoidal hole k = 0.5, where k = �x/ �y is the ratio of external load stress  
 

As it can be observed, the significant influence on the value of criti cal load multiplier has the 
configuration of the laminate. The highest absolute values are obtained for the configuration 
[±45°]15 and the lowest for the configuration [90°]30. Moreover, in the Fig. 2b for [90°]30 the 
number of half- waves changes with respect to the size of elli ptical cut -outs. 

Generall y, the presence of a openings cause the loss of buckling resistance. For a very small  
cut - outs the value of criti cal load multiplier is comparable with values obtained for structure 
without any holes. For a large openings, where the ratio d/b (d diameter of an hole, b is a shorter 
edge of a plate) is about 0.25 the reduction of the value of criti cal load multiplier is over 40 %. 
Detailed results varies significantly depending on the adopted configuration of the laminate as well  
as the shape of the hole and the applied load. 
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1. Introduction

The current paper is concerned with the mechanical behavior of multilayered orthotropic spher-

ical shells loaded by normal pressure.

Laminated plates and shells appear in a number of engineering or biomechanical applications.

Namely, three-layered spherical shell can be used as a basic model for the human eye. The layers rep-

resent the main layers of the outer coat of the eye (the sclera, the choroid and the retina), respectively.

2. Material and methods

We consider a multilayered spherical shell deformed by inner normal pressure. Transversal

isotropy is assumed for each layer. The mechanical and geometrical characteristics of the layers

differ from each other.

Two refined theories for orthotropic plates of moderate thicknesses worked out by Paliy-Spiro

(PS) [1] and by Rodinova-Titaev-Chernykh (RTC) [2] are employed to study the stress-strain state

of the shell. Results found with the RTC and PS theories are compared with those obtained with the

exact 3D theory of elasticity.

We also compare results for obtained the three-layered shell with those for one-layer shell with

average elastic properties.

3. Results

For transversally isotropic spherical shell of one layer, we obtain the displacement of the middle

surface by means of the 2D PS theory (uPS) and the RTC theory (uRTC) as

uPS/uKL = 1− α(1− ν∗),(1)

uRTC/uKL = 1− α(1− ν∗)− α2

(

1

4
−

6ν∗

5ν ′
−

ν∗

12
−

(ν∗)2

6

)

,(2)

where uKL is the Kirchhoff-Love approximation of the mid-surface deflection (uKL = p(1−ν)R
2

2E1h
),

p — the load parameter, α = h/R — the relative shell thickness, (here h is the shell thickness

and R is the typical radius of the curvature), E1, E3, ν, ν
′ — the independent elastic parameters,

ν∗ = E1ν
′/(E3(1− ν)).

Considering α ≪ 1, the exact 3D-theory (u3D) gives [3]

u3D/uKL = 1− α(1− ν∗)− α2

(

1

4
−

ν∗

12ν ′
−

11

12
ν∗

)

+O(α3).(3)

One can find the exact 3D solution for isotropic spherical shell, for example, in [4].

The comparison of relations (1), (2) and (3) shows that both 2D-theories give two first terms of

the 3D solution (3). The RTC theory gives one of three terms of the third order in (3). For multilayered

shells the similar, but much lengthy formulas are also obtained.

In the multilayer shell, the salient points were revealed for radial stresses and displacements.

Circumferential stresses possessed jump discontinuities (gaps) near layer-to-layer contact lines. The
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more material properties differ from each other, the larger were the gaps. For the eyeball such effects

may lead to internal detachments of the inner layers of the eye shell under increased intraocular

pressure, e.g. a detachment of the choroid and the sclera.

4. Conclusions

The presented 2D shell theories give acceptable fit to the 3D exact solution for spherical shells

with a transversal isotropy. For orthotropic spherical shells or/and ellipsoidal shells adequate results

can be obtained by means of these theories.
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HARMONIC VIBRATION OF A CUSPED PLATE IN THE ZERO APPROXIMATION OF

VEKUA’S HIERARCHICAL MODELS

N. Chinchaladze

Iv. Javakhishvili Tbilisi State University, I. Vekua Institute of Applied Mathematics,

2 University Str., 0186 Tbilisi, Georgia

In the case of harmonic vibration we study the well-posedness of boundary value problems for

elastic cusped symmetric prismatic shells in the zeroth approximation of I.Vekua’s hierarchical model.

A survey of results concerning cusped prismatic shells one can find [4]. To the investigation of cusped

plates within the framework of classical Kirchhoff-Love model are devoted works of E. Makhover [6],

G. Jaiani [5], N. Chinchaladze [1], etc. In 2000 by G. Devdariani, G. V. Jaiani, S. S. Kharibegashvili

and D. Natroshvili (see [3]) the first boundary value problem for the system of cusped prismatic shells

in the first approximation was investigated. In [2] bending of the cusped plate in case of Vekua’s

hierarchical models was studied.

We consider symmetric cusped prismatic shells, i.e., plates of variable thickness with cusped

edges. We assume that the cusped plate projection ω has a Lipschitz boundary ∂ω = γ
0
∪γ

1
, where γ

0

is a segment of the x1-axis and γ1 lies in the upper half-plane x2 > 0; moreover, in some neighborhood

of an edge of the plate which may be cusped, the plate thickness have the following form

2h(x1, x2) =
(+)

h (x1, x2) −
(−)

h (x1, x2) = h0x
κ
2
, h0 = const > 0, κ = const ≥ 0, x2 ≥ 0.

Then γ0 will be a cusped edge for κ > 0.

In what follows Xij and eij are the stress and strain tensors, respectively, ui are the displace-

ments, Φi are the volume force components, ρ is the density, λ and µ are the Lamé constants, δij is the

Kronecker delta. Moreover, repeated indices imply summation, bar under one of the repeated indices

means that we do not sum.

By uir, Xijr, eijr, Φjr we denote the r-th order moments of the corresponding quantities ui,

Xij , eij , Φj as defined below:

(

uir, Xijr, eijr, Φjr

)

(x1, x2, t) :=

(+)

h (x1,x2)
∫

(−)

h (x1,x2)

(

ui, Xij, eij, Φj

)

(x1, x2, x3, t)Pr(ax3 − b) dx3, j = 1, 3.

I.Vekua’s hierarchical models for elastic prismatic shells are the mathematical models (see, e.g., [7],

[8], and [4]). Their constructing is based on the multiplication of the basic equations of linear elastic-

ity by Legendre polynomials Pr(ax3 − b), where

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

(+)

h (x1, x2) +
(−)

h (x1, x2)
(+)

h (x1, x2) −
(−)

h (x1, x2)

,

and then integration with respect to x3 within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2). By constructing

Vekua’s hierarchical models in Vekua’s first version on upper and lower face surfaces stress vectors

are assumed to be known.
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The mathematical model of elastic cusped plates with variable thickness, in the zeroth approxi-

mation is described by the following degenerating hyperbolic system [4]

ρhvβ0,tt − µ
[

(hvα0,β),α +(hvβ0,α),α

]

− λ(hvα0,α),1 = Φ
(0)

β , α 6= β, α, β = 1, 2,

ρhv30,tt − µ(hv30,α),α = Φ
(0)

3
.(1)

where Φ
(0)

j :=

√

1 +

(

(+)

h ,1

)2

+

(

(+)

h ,2

)2

Q+

j +

√

1 +

(

(−)

h ,1

)2

+

(

(−)

h ,2

)2

Q−

j + Φj0, are the ze-

roth moments of the volume forces Φj, vj0 are the components of the zeroth moment of the displace-

ment vector. Q+

j and Q−

j are projections on the axis xj, j = 1, 2, 3, of the surface forces Q+ and Q−

acting on the upper and lower faces of the prismatic shell; the ranges of Latin and Greek indices are

{1, 2, 3} and {1, 2} correspondingly.

Let us consider the case of harmonic vibration, i.e., vi0(x, t) := e−νt 0

vi0(x), Φ
(0)

i (x, t) :=

e−νt

0

Φ
(0)

i (x), ν = const > 0, i = 1, 2, 3. For
0

vi0(x) taking into account (1) we get the following

system (in what follows we omit the overscript index 0 if it will not lead to a misunderstanding)

−ρν2hvβ0 − µ
[

(hvα0,β),α +(hvβ0,α),α

]

− λ(hvα0,α),β = Φ
(0)

β , α 6= β, α, β = 1, 2,

−ρν2hv30 − µ(hv30,α),α = Φ
(0)

3
.

For arbitrary κ ≥ 0 we introduce appropriate function spaces Xκ
0,ν which are crucial in our anal-

ysis. We show coerciveness of the corresponding bilinear form and prove uniqueness and existence

results for the variational problem. We describe in detail the structure of the spaces Xκ
0,ν and establish

their connection with weighted Sobolev spaces. Moreover, we give some sufficient conditions for a

linear functional arising in the right hand side of the variational equation to be bounded.
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1. Introduction

In the framework of general nonlinear plate theory we consider a buckling problem for an elastic

plate containing residual or eigen-(internal) stresses. In contrast to the Föppl-von Kármán model [1, 2]

the tangential strains are not supposed to be small. We obtain a system of nonlinear partial differential

equations with respect to the transverse deflection and the coefficients of the first fundamental form.

The system describes in particular the bending of the plate due to relaxation of internal stresses with

no external forces applied. In the case of very thin plate (membrane) that doesn’t resist bending we

show that there exists along with the plane stress state solution also the bent form which corresponds

to the relaxed state of the membrane.

2. Residual stresses

Residual stresses in the plate occur via the general incompatibility equation [3] of the plane

nonlinear elasticity theory

(1) ∇ ·
[

(detU)−1
e · U · (∇ · e · U)

]

= ∇ ·
[

(detU)−1
e · G · α

]

+ β.

Here G = U
2 is the Cauchy-Green strain measure, e = −E×i3 is the 2D permutation tensor, E is the

identity tensor, α is the density of edge dislocations, β is the density of wedge disclinations. Please

note, that other sources of residual stresses like distributed heat or growth parameters for biological

tissues [4] could be placed in the right hand side of the equation (1).

3. Relaxation process

Figure 1. Buckling of the plate due to the relaxation process

The particular advantage of slender bodies makes it possible to consider relaxation of stresses

by the escape in the third dimension. Here w is used to denote the transverse deflection of the plate.

Then

(2) G = ∇R · ∇R
T = ∇ρ · ∇ρ

T + ∇w∇w = G
∗ + ∇w∇w.

Substituting (2) into (1) we have in the membrane limit (G = E)

(3) [w, w] =
[

1 − (∇w)2

]
3

2

β, [w, w] =
∂2w

∂x2

1

∂2w

∂x2

2

−
( ∂2w

∂x1∂x2

)

2

,

where [w, w] is the Monge-Ampere operator. In the case of the Föppl-von Kármán theory [1, 2]

instead of (3) one should use [w, w] = β. This type of equation according to the general theory [5]

gives no direct way of taking into account negative β.
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4. Some results

Let the domain occupied by the plate, the distribution of incompatibilities β and the transverse

deflection w be axially-symmetric. Then equation (3) admits exact integration. Moreover we assume

the usual zero-slope condition [6] in the center of the membrane: w′(r)|r=0 = 0.

Under such conditions for constant positive β we obtain

(4) w(r) =
1

β

√

β2r2 + 4β −
1

√
2β

log

∣

∣

∣

∣

∣

√
2β +

√

β2r2 + 4β
√

2β −
√

β2r2 + 4β

∣

∣

∣

∣

∣

− C,

whereas for constant negative β

(5) w(r) =
1

β

√

β2r2 + 4β +
1

√
−2β

arctan

√

β2r2 + 4β
√
−2β

− C,

the constant C in both cases is furnished by vanishing w(r) on the outer radius r = r0 of the plate.

For negative β the solution exists only in some part of the unit disk, where r ≥
√

−4/β.

Figure 2. A) Positive disclinations; B) Negative disclinations
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THE MODELS OF NONCLASSICAL ANISOTROPIC SPHERICAL SHELLS
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1. Introduction

Theproblem of stress-strain stateof conjugated orthotropic spherical shellsunder internal pres-
sure by means of new nonclassical shell theories and three–dimensional theory [1] is studied. The
comparison of solutionsobtained with theuseof improved nonclassical shell theories of Rodionova-
Titaev-Chernykh (RTCH) [2] andPaliy-Spiro (PS) [3] isdone.

The improved iterativeRTCH theory isbased onthe following hypotheses:

1. transverse tangential and normal stresses are distributed on shell ’s thickness according to
quadratic and cubic laws respectively;

2. tangential and normal componentsof thedisplacement vector aredistributed ontheshell thick-
nessaccording to quadratic andcubic lawsrespectively. This theory allows taking into account
turnsof fibers, their deviationand changeof their length.

The Paliy-Spiro shells theory is a theory of shells of moderate thicknesswhich assumes the
following hypotheses:

1. straight fibers of the shell which are perpendicular to its middle surfacebefore deformation
remain also straight after deformation;

2. cosine of the slope angle of these fibers to the middlesurfaceof the deformed shell i s equal to
the averaged angleof transverseshear.

The influence of relative thicknessfor the PS, RTCH shells theory and 3D theory were com-
pared. Also the influenceof modulusof elasticity ratio onthedeformation form is investigated.

2. Differential equation and Numerical methods

Taking into account the objects symmetry we assume, that all sizes depend only on two coor-
dinates: first defines a parallel li ne, secondthe shell thickness. Due to thesymmetry of section along
the rotationaxis, we consider only 2 conjugated arches.

We solve the problem in displacements. As a result of transformation of the basic relationship
of theshell theory the2 system of 3 differential equationsof 6th order with 6 boundary conditionsof
symmetry and 6 boundary conditionsof conjugated isobtained.

For the three-dimensional theory the2 systemsof the 2 differential equations in privatederiva-
tives of the 8 order with 4 boundary conditions of symmetry, 4 boundary conditions of conjugated
and 8conditionson layers surfacehavebeen received.

We solve this systems with the use of the program written in package Matematica 8.0 which
realizes thefinite-differencemethod. Usinga thismethodtheoverall pictureof deformation of shells
for variousratiosof modulesof elasticity was obtained.

Such problem can model behaviour of a corneoscleral shell of an eyewith increasing of intraoc-
ular pressure. An outer shell of the eye, the cornea-scleral (fibrous) tunic consists of the cornea and
thesclera. Thesclerashell formsabout 4/5 of thetotal fibroustunicof thehuman eye andisaspatially
reinforced constructerswhere it ispossibleto allocate four shells in courseof collagen fibres [4]. The
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structure of the sclera shell explains its anisotropy and heterogeneity. For normal human eyesight it
is necessary that the rays received by an eye after reflection focus strictly on retina). Myopia (near-
sightedness) can be caused by the fact that an eye-ball has a shape of an oblongelli psoid (fig. 1, a).
Due to it the image of distant objects focuses in front of the retina. Hypermetropia (farsightedness)
can be caused by the fact that an eyehasashapeof aflattened elli psoid (fig. 1, b). Due to it the focus
point is behind theretina.

Figure 1. A deformation overall pictures (a,b)

3. Conclusions

On the basis of the performed research we can conclude the following. If we consider the
sclera of the eye as a transversally-isotropic material, the internal pressure influences the change of
anteroposterior axis of an eye insignificantly. As regards the orthotropic material we can note that
in the case when the elasticity module operating in a direction of a line of latitude is more than
the elasticity module operating in a direction of a line of a longitude then the overall picture of
deformationcorresponds to a condition of myopia. In theopposite case, thedeformationcorresponds
to ahypermetropia condition.
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1. Literature survey

In 1985, M. Levinson presented an exact solution for the equilibrium of a three-dimensional

plate-like body with rectangular cross section, simply supported at the edge, made of an isotropic

linearly elastic material, and subject to transversal loads on its end sections [1]. Levinson’s approach,

which was based on a simple parametric representation of the candidate solution in terms of displace-

ments, has been found expedient to solve a number of similar problems, where one or another of

the original data were changed or generalized. Specifically, a Levinson-type solution has been given:

(i) for plate-like bodies with rectangular cross section and simply-supported at the edge, when they

are formed by several layers of transversely isotropic materials [2] and when they are piezoelectric,

both in statics [3] and dynamics [7]; (ii) for plate-like bodies of general cross section, when they are

transversely isotropic [4] and when anyone of the boundary conditions from an exhaustive list, in-

cluding transverse sliding and elastic support, prevails on the lateral boundary [6]. Moreover, explicit

solutions have been found for the equilibrium of plate-like bodies with circular cross section, simply

supported at the edge, and made of isotropic [5] and transversely isotropic materials [8].

2. Method and results

In the present paper, we derive Levinson-type solutions for the equilibrium problem of plate-

like bodies composed of several layers of transversely isotropic materials and simply supported at

the edge. We treat both rectangular and circular cross sections. In the former instance, arbitrary

transverse loads are applied at the end faces, while the lateral surface is load-free; in the latter, the

end-face loads are axisymmetric and suitable radial tractions are applied on the lateral surface. Our

derivation begins by requiring that

• in each layer, a displacement field of the type proposed by Levinson for a single-layered plate-

like body satisfy that layer’s equilibrium equations.

Next, we impose

• continuity of displacements and traction vectors across the interfaces between layers, so as to

exclude sliding or, worse, detachment of adjacent layers and to guarantee equilibrium of body

parts containing interlayer surfaces, that is to say, possibly singular surfaces for the overall

stress field.

The first requirement implies that: (i) in each layer, the function describing the dependence of the

displacement components on the in-plane coordinates is an eigenfunction of the laplacian, and as such

is written as a double trigonometric series when the cross section is rectangular, as a Bessel series for a

circular cross section; (ii) the function describing the dependence of the displacement components on

the transverse coordinate are the integrals of ordinary differential equations with constant coefficients,

whose integration constants are expressible in terms of the loads acting on the layer’s end sections.

As a consequence of (i), to find the dependence on the in-plane coordinates of the displacement

field in the whole plate is the matter of determining as many constants as the layers for each coeffi-

cient of the relevante series; in fact, to satisfy the second requirement, each of these constants has to
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be proportional by a calculable coefficient to one of them, which can be chosen at will. Furthermore,

by an elimination process justified by (ii) and the second requirement, we obtain a system of four

equations that determine in terms of the loads applied on the two end faces of the plate the four inte-

gration constants needed to specify the dependence on the transverse coordinate of the displacement

field in one of the layers, which again can be chosen at will; the corresponding integration constants

for all other layers are then found sequentially.
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In recent years a significant progress in manufacturing and applications of metamaterials is ob-

served [1, 2]. Metamaterials are a special type of materials which physical and mechanical properties

are determined almost by their geometrical structure. A special type of metamaterials is the helical or

chiral metamaterial which microstructure is based on helical elements, see e.g. [3]. Applications of

such materials are in micro- and nanoelectromechanical systems (MEMS/NEMS).

For such flexible structures as a helical shell the buckling analysis plays an important role. Since

many chiral metamaterials demonstrate coupling between electro-magnetic and mechanical fields the

buckling analysis should be performed with taking into account the electro-mechanical interaction.

In this paper we discuss the buckling of a helical shell made of GaAs under applied electric field.

The geometry of the shell is presented in Fig. 1. This material is a semiconductor with piezoelectric

properties. It is used in optoelectronic devices as a light-emitting diodes, semiconductor lasers, etc.,

see e.g. [4, 5]. The helical shell elements can be also used in manufacturing of chiral piezoelectric

composites.
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Figure 1. Helical shell: geometry and boundary conditions.
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Figure 2. Initial and buckled shapes of the shell.
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The basic Lagrangian equations of an electroelastic bodies in the case of quasielectrostatics and

absence of external loads take the form [10]

(1) ∇ · [σ · F] = 0, ∇ ·D = 0, σ = C : ε− e · E, D = e · ε+ d · E,

(2) ε =
1

2
(∇u+∇u

T +∇u · ∇u
T ), E = ∇ϕ,

(3) ϕ|Γ1
ϕ
= ϕ0, ϕ|Γ2

ϕ
= 0, n ·D|Γq

= 0, u|Γu
= 0, n · σ|Γσ

= 0,

where n is the normal vector to the shell boundary Γ = Γu ∪ Γσ = Γ1

ϕ
∪ Γ2

ϕ
∪ Γq, F = I+∇u is the

deformation gradient, u is the vector of displacement, E is the vector of the electric field, expressed

by the electric potential ϕ, σ is the 2nd Piola-Kirchhoff stress tensor, D is the vector of electric

induction, ε is the strain tensor, C, e, d are the elasticity tensor, the tensors of the piezoelectric and

dielectric parameters, respectively. Here Γq = Γσ, Γu = Γ1

ϕ
∪ Γ2

ϕ
. Let us note that we take into

account the geometric nonlinearity in the strain tensor. The shell is deformed by the difference of the

electric potential applied along Γ1

ϕ
and Γ2

ϕ
.

The buckling analysis of the shell is performed by the finite element packages Simulia ABAQUS

and COMSOL Multiphysics. Since we take into account electric degrees of freedom, the problem is

solved with finite elements, which have both displacement and electrical potential as nodal variables.

In particular, the ABAQUS C3D20RE elements (20-node quadratic piezoelectric brick, reduced in-

tegration) are used. GaAs is an anisotropic material. We assume that the polarization axis of a

piezoelectric material is directed along the helix, see the dashed line in Fig. 1. Hence, the matrix of

piezoelectric coefficients rotates in every finite element as in [7]. For the determination of critical

states and buckling modes we use the energy criterion of the stability, see e.g. [8, 9]. As an example

the first bucking mode is shown in Fig. 2.

The peculiarities of the shell bucking under electric field are analyzed. Let us note that there

exist specific bucking modes which are not observed in classical elastic analysis. We also compare

the results with ones based on the theory of naturally twisted rods. Finally, we discuss the possible

applications of the chiral shells buckling in the control of chiral piezoelectric composites.
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1. Introduction

This study is concerned with the asymptotic model for the Konenkov wave propagating along

the edge of a semi-infinite elastic plate [1], see also [2] for history and review on the subject. The

approach of this note is extending the methodology for the surface Rayleigh wave [3] relying on

representation in terms of harmonic functions [4]. A recent contribution [5] illustrating the possibility

of similar formulation in case of the flexural edge wave, provides the foundation for the asymptotic

process. A multi-scale slow time perturbation scheme leads to an asymptotic model containing elliptic

equation, governing the decay away from the edge, and a parabolic equation describing the edge wave

propagation. The described model is oriented for the extraction of the flexural edge wave contribution

into the overall dynamic response. The model also reveals an elliptic-parabolic nature of the wave. It

is remarkable that within the derived asymptotic model the edge behaviour is governed by a parabolic

beam-type equation, while in the case of the Rayleigh wave surface dynamics was described through

a hyperbolic string equation [3].

2. Statement of the problem

We consider an elastic, isotropic, semi-infinite Kirchhoff plate −∞ < x < ∞, 0 ≤ y < ∞,

−h ≤ z ≤ h. The governing plate bending equation is taken in its classical form, see e.g. [6], with the

flexural rigidity D = 2Eh3/ (3− 3ν2), where E is the Young’s modulus and ν is the Poisson ratio.

The boundary conditions at the edge y = 0 are taken in the form of prescribed edge loading moment

M(x, t) and shear force N(x, t), respectively. Due to the linearity of the problem these may be split

into two cases, namely N(x, t) ≡ 0 and M(x, t) 6= 0, and M(x, t) ≡ 0 and N(x, t) 6= 0.

3. Asymptotic model for the Konenkov wave

Introduction of the multi-scale dimensionless parameters

ξ =
x

h
, η =

y

h
, τ =

c2t

h
, τ

sl
= ετ,(1)

where c2 is the shear wave speed, ε is a small parameter and τ
sl

is slow time variable, serves as a

basis for the perturbation scheme. The physical interpretation of the small parameter is essentially

the deviation of phase velocity of the propagating wave in the near-edge vicinity from the Konenkov

wave speed.

A key assumption of beam-type behaviour

∂4W

∂ξ4
+ c

∂2W

∂τ 2
= 0,(2)

where W is the deflection of the plate and c is a parameter, transforms the classical plate bending

equation to an elliptic equation, which may be expressed in terms of the original variables as

[

∂
yy

+
√

1− c2
K
∂
xx

] [

∂
yy

+
√

1 + c2
K
∂
xx

]

W = 0,(3)
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implying the solution in terms of harmonic functions. Here c
K

is the well-known Konenkov root

c
K
=

[

(1− ν)
(

3ν − 1 + 2
√

ν2 + (ν − 1)2
)]

1/4

.(4)

Let us focus first on the first type of edge boundary conditions, when M(x, t) 6= 0. A treatment

analogous to that presented in [3] is then performed, giving at the leading order the dispersion relation

of the Konenkov wave, and resulting at the next order in the parabolic equation at the edge y = 0

c4
K

∂4W

∂x4
+

2ρh

D

∂2W

∂t2
= A

∂2M

∂x2
,(5)

where A is a material constant, combined with the part of leading order boundary conditions, namely

∂2W

∂y2
+ ν

∂2W

∂x2
= 0, at y = 0.(6)

The last relation may be used for representation of solution in terms of a single harmonic function.

The resulting asymptotic model for the Konenkov wave contains the Laplace equation together with

the boundary condition (5). It is worth noting, that the dynamic factor is present only in the boundary

condition.

For the second type of the boundary conditions when M(x, t) ≡ 0 and N(x, t) 6= 0 the asymp-

totic model is formulated in respect of the rotation angle around the Ox-axis

V =
∂W

∂y
.(7)

The results are similar to that obtained in the first case, also containing an elliptic equation over the

interior and a parabolic equation at the edge.

It should be emphasized that the representation in terms of a single plane harmonic function,

see [5], simplifies the formulation of the problem, since the initial fourth order problem is reduced

to a Dirichlet problem for the Laplace equation, where the solution at the boundary is given by the

parabolic equation (5). We also remark that the obtained model highlights the dual elliptic-parabolic

nature of the flexural edge wave, therefore improving the physical understanding.

The possible extension of the approach could be performed for anisotropic or pre-stressed

plates, and also for interfacial flexural waves. The cases of curved plates and shells may also be

considered but are of seemingly less interest due to the growing length of algebraic expressions.
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1. Introduction 

Sandwich panels are widely used in engineering constructions, see e.g. [1]. Therefore, the 
classical  sandwich three-layer plates and shells, composed of thin, stiff , outer layers (faces)  and a 
thick, compliant, middle layer (core), were investigated by many researches. The classical sandwich 
members are still  investigated in  many  aspects, mainly because of  their  specific cross-sectional 
structure and resulting properties, but it is well  justified to investigate multil ayered (i.e., five-layer, 
seven-layer, etc.) sandwich panels since they are more realistic and useful than the three-layer 
counterparts. 

 Irrespective of number of layers all  the sandwich structures are more or less sensitive on the 
local loadings. The problem appears in particular in vicinity of the edges. Therefore,  the edges of 
sandwich panels are usuall y stiffened with C profiles or with some local inserts. Obviously, both 
including of the stiffeners or inserts into the structures and  some attempts to remove them imply 
necessity of looking for better, more refined mechanical models for the structures, see e.g. [2,3].   

The present  contribution is devoted to modeling of free vibration of a multil ayered plane 
rectangular sandwich panel fastened with a frame along its two parallel edges by means of bolts. 
Such solution enables one quick mounting of the panel. The plane strain problem is solved within 
the local theory of linear elastodynamics which enables us to create accurate models for the 
multil ayered structures with realistic edge solutions. The model (solution) outlined here is obtained 
following the way presented in [4]. All  through-the-thickness local boundary and compatibilit y 
equations, for the displacements and stresses, have been satisfied and some new edge boundary 
conditions have been included in the model. In each layer, irrespective of its thickness, the cross-
sectional warping is assumed. Any simpli fications or limitations concerning the structure have not 
been introduced.  

The model is also applicable to the sandwich beam and therefore its predictions, seven 
eigenfrequencies, for a three-layer beam are compared with the corresponding results obtained by a 
commercial FEM  program. The results are very well  convergent.     

2. Some mathematical details of the model 

The final, numerical form of the problem consists of three coupled transcendental equations, 
  

(1)     .0),,(,0),(,0),( 321 === ωγαωγωα FFF  

 
The first and second equations result from through-the-thickness boundary and compatibilit y 
conditions while the third one is obtained after satisfying the following edge boundary conditions 
for the in-plane and out-of-plane displacements, 
  

(2)    

.0),2/(),2/(

,0),2/(),2/(

11

11

=±=+==±=−=

=±=+==±=−=

hzLxuhzLxu

hzLxuhzLxu

zz

xx
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Symbols h1, L and  x, z  in (2) denote co-ordinates of the bolts fastening the panel to a frame and the 
space variables, respectively.  

3. Numerical results  

To test the model a few eigenfrequencies of a three-layer sandwich beam were calculated and 
compared with eigenfrequencies predicted by the FEM model. The computations were made for the 
following data: thicknesses of layers of the structure (mm): 1, 20, 1, Young’s mod. of the layers 
(GPa): 68.9, 0.1833, 68,9, Poisson’s ratios of the layers: 0.33, 0.33, 0.33, densities of the layers 
(kg/m3): 2687, 119,7, 2687. Length of the structure L=0.55 m. Part of  results of the computations 
are given  in Table 1. 

 

 m=1 m=2 m=3 m=4 

1984.77 

2015.33 

1.52% 

4185.98 

4241.27 

1.30% 

6728.92 

6797.78 

1.01% 

9344.72 

9420.38 

0.80% 

Table 1. Eigenfrequencies (rad/s) for vibration modes 1-4. 

The values in the first row of the Table are predicted by the new model, outlined in the above 
sections, while the results in the second row are predicted by the FEM model. It is seen that the 
results are very well  convergent. The percentage differences given in the third row are lower than 
1.6%, for the first mode of vibration it is 1,52 %, and decrease for the next vibration modes.  

4. Conclusion 

The model can be used for computing accurate eigenfrequencies for both multil ayered  panels, 
including the sandwich strips and beams, and for homogeneous structures. Comparing 
eigenfrequencies for a particular structure with different edge boundary conditions one can observe 
significant influence of the way of fastening of the structure on its eigenvalues. 
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1. Introduction

The dual-mixed variational principle in terms of rotations and a priori non-symmetric stresses

was introduced by Fraeijs de Veubeke [4], where the translational equilibrium equations is satisfied by

the first-order stress function tensor. This method was applied to plane elasticity, membrane and plate

problems by Bertóti [1, 2, 3]. In the work [3] a dimensional reduction procedure for plates and shells

is described, which is admissible for dual variational principles with a priori non-symmetric stresses.

This dimensional reduction concept was applied in [6] to cylindrical shell problems based on the

three-field dual-mixed Hellinger-Reissner variational principle. The numerical results obtained for

axisymmetrically loaded cylindrical shell problems based on the first-order stress functions [5] prove

that this concept is worth investigated for two-dimensional shell problems.

2. Fraeijs de Veubeke variational principle

The functional of the three-dimensional two-field dual-mixed variational principle can be ob-

tained by adding a Lagrange multiplier term enforcing the symmetry of the stress tensor to the com-

plementary energy functional [4]:

(1) F(σpq, φ
pq
) =

∫

V

[W
c
(σpq

)+ ∈
pqc

ϕcσpq

] dV −

∫

Su

ũ
p
σpqn

q
dS,

where σpq is the stress tensor, ϕc is the rotation vector and the permutation tensor is denoted by ∈
pqc

.

Here the V denotes the volume of the body bounded with surface S = S
u
∪ S

p
. The complementary

strain energy is given by

(2) W
c
(σpq

) =
1

2
σkℓε

kℓ
(σpq

) =
1

2
σkℓD

kℓpq
σpq in V,

where the symmetric strain tensor ε
kℓ

can be expressed with the aid of the fourth-order elastic com-

pliance tensor D
kℓpq

. Applicability of (1) requires that the stress tensor satisfy a priori the translation

equilibrium equation

(3) σkℓ

..;ℓ
+ qk = 0 in V

and the stress boundary condition

(4) σkℓn
ℓ
= p̃k on S

p
,

where qk is the density of the body forces and p̃ k is the prescribed surface traction on the surface

S
p

with outward unit normal n
ℓ
. It should be mentioned that the displacement boundary condition

u
p
= ũ

p
on surface S

u
is imposed weakly.

A stress field that fulfills (3) can be obtained by introducing the first-order stress function tensor

Ψk

.q
, as

(5) σkℓ

= ǫℓpqΨk

.q;p
+ σ̂kℓ in V.

where σ̂kℓ is a particular solution to (3).
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3. Cylindrical shell model

Our main goal is to derive a dimensionally reduced cylindrical shell model based on the three-

dimensional dual-mixed variational principle of Fraeijs de Veubeke. All the variables have been

expanded into power series with respect to the thickness coordinate. Assuming a thin cylindrical shell

the translational equilibrium equation in terms of expanded stresses is obtained. The structure of the

translational equilibrium equations in terms of expanded stresses tempting us to prescribe one degree

higher approximations for the transverse shear and transverse normal stresses, this opportunity is the

favorable property of the application of non a priori symmetric stress tensor. In this way several shell

models can be derived by using different approximations. In the derived model the stresses are linear

or parabolic with respect to the thickness. Further, the approximation of the stresses determines the

approximation of the other variables.

A shell model derived in this way makes the application of the classical kinematical hypotheses

regarding the deformation of the normal to the shell middle surface unnecessary. As the classical

kinematical hypotheses are not incorporated into the formulation, unmodified three-dimensional con-

stitutive equations can be employed.
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1. Introduction

Consider the shell which is a sector of torus with a closed cross section. We call this shell the

curved tube. It is known, that the curved tube with a circular cross section under internal pressure

do not changes its curvature in linear theory [1]. This is confirmed experimentally for small strains

and isotropic materials. The tube with an elliptic cross section changes its curvature under internal

pressure. If r2 < r1 (Fig. 1c) then the curvature of a pressurized curved tube deacreases. If r2 > r1
(Fig. 1d) then the curvature increases. This phenomenon is widely used in manometric tubes.

The behavior of curved tube under internal pressure is more complex for large strains. It is

shown in [2], that the curvature of thin-walled nonlinear elastic curved tube with a circular cross

section changes during inflation. Under internal pressure the curved tube made of neo–Hookean

material unbends, i.e. its curvature decreases.

In this work the thin-walled nonlinear elastic curved tubes with an elliptic cross section are

considered.

2. Formulation

The problem describing the equilibrium of a curved tube under internal pressure is the special

case of a pure bending [2]. The approach to the solution of pure bending problem is given in the book

by A. Libai and J. S. Simmonds [3] and the paper by L. M. Zubov [4]. This approach allows us to

decompose the deformation into two parts: an in-plane deformation of meridional cross section, plus

a rigid rotation of each of these meridional planes about some axis by linearly varying angles. In this

case the equilibrium equations are reduced to the ordinary differential equations.

Consider the thin-walled shell with a constant thickness h made of hyperelastic material. We

will use the incompressible neo-Hookean model of the material with the constant µ. The problem will

be considered within the framework of the nonlinear theory of membrane [5]. Let in the undeformed

state the median surface of the tube is given by the equations

r = x1(s)i1 + x2(s)e2, e2 = i2 sin βt+ i3 cos βt, s ∈ [0; 2π], t ∈ [0; l]

x1(s) = r1 sin s, x2(s) = β−1
− r2 cos s.

Here {i1, i2, i3} is the standart orthonormal basis in a fixed Cartesian frame, s and t are the Gaussian

surface coordinates.

Let the external load will only be the uniformly distributed pressure p in the tube. Suppose that

in the deformed state the median surface is given by the following equations [4]

R = X1(s)i1 +X2(s)E2, E2 = i2 sinBt+ i3 cosBt.

Then the equilibrium equations reduce to the system of ordinary differential equations [2]. The ob-

tained boundry value problem is solved numerically using a shooting method.
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Figure 1. a) Longitudinal section; b), c), d) cross sections; e) pressure vs curvature parameter.

3. Results

Introduce the dimensionless pressure p∗ and curvature parameter B∗

p∗ =
(r1 + r2)p

2µh
, B∗ =

B

β
.

In Fig. 1e the dependence between the pressure and the curvature parameter is shown for three

cross sections: one circular (r1 = r2 = 1) and two elliptic (r1 = 1.1, r2 = 0.9 and r1 = 0.9, r2 = 1.1).

Under small strains the behavior of the curved tubes could be described by linear theory. Under small

internal pressure the curvature of the tube with r2 < r1 decreases and the curvature of the tube with

r2 > r1 increases. During the inflation the elliptic cross section tends to a circular shape. After that

the behavior of tubes is changed radically. The curvature decreases to all tubes under large strains.
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FROM ORTHOTROPIC FLÜGGE SHELL THEORY AND NONLOCAL ELASTICITY

G. Mikhasev and A. Sheiko

Belarusian State University, Minsk, Belarus

1. Model

We consider a multi-walled carbon nanotube (MWCNT) consisting of N layers. The tube is

assumed to be in a nonhomogeneous elastic medium and pre-stressed. The MWCNT is modeled as

the system of concentrically nested cylindrical shells characterized by length L = Rl, mass density

per unit volume ρn, radius Rn = Rrn and effective thickness hn of the nth layer, where R is the

tube characteristic size and n = 1, ..., N . At the middle surface of the nth cylinder, the curvilinear

co-ordinate system α = Rx, βn = Rrnϕ is introduced, where x is the dimensionless longitudinal

co-ordinate, and ϕ is an angle. Following to paper [1], every layer composing the tube is assumed

to be orthotropic cylindrical shell with Young’s moduli En,i, Poisson’s ratios νn,i and shear modulus

Gn, where indexes i = 1, 2 correspond to longitudinal and circumferential directions respectively.

2. Microscopic and macroscopic stresses. Constitutive equations

Let T 0

n,i, S
0

n,i be the initial membrane stresses in the nth layer. We introduce also the additional

microscopic stresses Tn,i, Sn,i, Qn,i, Hn,i,Mn,i acting in these layers, where Tn,i, Sn,i, Qn,i are the

membrane and transverse stress resultants respectively, and Hn,i,Mn,i are the resultant microscopic

moments. Let us also introduce the macroscopic (classic) stresses T
(m)

n,i , S
(m)

n,i , Q
(m)

n,i and moments

H
(m)

n,i ,M
(m)

n,i corresponding to the microscopic ones. According to the nonlocal elasticity theory [2],

these stresses are linked as follows

Ln(Tn,i, Sn,i, Qn,i, Hn,i,Mn,i) =

(

T
(m)

n,i , S
(m)

n,i , Q
(m)

n,i , H
(m)

n,i ,M
(m)

n,i

)

, i = 1, 2,(1)

where the appropriate two-dimensional linear operator Ln is written as [3]

Ln = (1− ε2∆n), ∆ =

(

∂2

∂x2
+

1

r2n

∂2

∂ϕ2

)

, ε =
e0a

R
.(2)

In equation (2), a is the internal characteristic length of the tube material (for carbon a ≈

0.142nm), and e0 is the material constant of non-locality (e.g, Eringen [2] gives e0 = 0.39).

The constitutive equations for orthotropic layers are assumed to be of the form

T
(m)

n,i = Cn,iiεn,i + Cn,ijεn,j,

S
(m)

n,i = Cn,66ωn, H
(m)

= Dn,66τn,

M
(m)

n,i = Dn,iiκn,i +Dn,ijκn,j, i, j = 1, 2, i 6= j,(3)

where the strains εn,i, ωn, τn, κn,i are found through the displacements un,i in the nth layer accord-

ing to the kinematic hypothesis accepted here (e.g., see in [4]), and the magnitudes Cn,ij, Dn,ij are

expressed through the elastic constants En,i, Gn, νn,i of the orthotropic material which depend on the

tube chirality [1].
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3. Governing equations

The governing equations for the MWCNT may be derived from the Flügge type shell theory

[5]. Taking into account the initial membrane stresses as well as the van der Waals (vdW) forces, they

are easily written in terms of the microscopic stresses like that was made in [3], [4]. After multiplying

the operator (2) from the left to both sides of these equations, if equations (1), (3) and the strains-

displacements relations are taken into consideration, the following governing equations written in the

dimensionless form are obtained:

3
∑

j=1

(

µ4ζ
n
M

n,ij
+ L

n,ij
+ T

n,ij

)

u
n,j

− δ
n
L

n

∂2u
n,i

∂t2
−

−L
n
[ĉ

n+1,i(un+1,i − u
n,i
)− ĉ

n,i
(u

n,i
− u

n−1,i) + q̂
n,i
] = 0,(4)

where

i = 1, 2, 3, n = 1, 2, ..., N, µ4 =
h2

N

12R2
, ζ

n
=

(

h
n

h
N

)

, δ
n
=
(

ω
N

ω
n

)

,

ω2

n
=

E∗

n

ρ
n
R2

, E∗

n
=

2E
n,1νn,2

ν
n,1 + ν

n,2

, ĉ
n,i

=
R2c

(vdW )

n,i

h
n
E∗

n

, q̂
n,i
(x, ϕ, t) =

R2q
n,i

h
n
E∗

n

.(5)

Here M
n,ij

,L
n,ij

and T
n,ij

are the (3 × 3) matrix with elements being differential operators, t/ω
N

is

time, c
(vdW )

n,i
are the vdW interaction spring constants [3], and q

n,i
are the distributed surface forces.

In equations (4), the operators M
n,ij

,L
n,ij

correspond to the moment and membrane theories respec-

tively [4] of elastic orthotropic shells, and the operator T
n,ij

takes into account the initial membrane

stresses T 0

n,i
, S0

n,i
. It should be noted that c1,i = u

N+1,i = 0 for any i = 1, 2, 3, and c
N+1,i(x, ϕ) are

the variable dimensionless spring constants of the surrounding nonuniform elastic medium.

Equations (4) may be applied for studying vibrations of the MWCNT taking into account the

tube chirality, non-locality, the initial membrane and vdW forces, and the elastic properties of the

surrounding nonhomogeneous matrix as well. As an example, free vibrations of the medium length

tube lying in the uniform elastic medium have been studied. Performed calculations have shown

that introducing the parameter of non-locality e0 into our model results in decreasing the natural

frequencies of the MWCNT. In addition, using the asymptotic approach developed in book [4], the

localized axisymmetric free vibrations of the MWCNT have been examined. It has been found that

inhomogeneity of the surrounding elastic medium may lead to strong localization of the natural modes

of the pre-stressed tube in a neighborhood of some parallel where the coefficient of soil reaction is

minimum.

4. References

[1] T. Chang (2010). A molecular based anisotropic shell model for single-walled carbon nanotubes,

J. Mech. Phys. Solids, 58, 1422-1433.

[2] A.C. Eringen (1983). On differential equations of nonlocal elasticity and solutions of screw dis-

location and surface waves, J.Apple Phys 54, 4703-4710.

[3] T. Usuki, K. Yogo (2009). Beam equations for multi-walled carbon nanotubes derived from
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1. Summary 

Masonry curved elements ± as for instance arches, domes and vaults ± represent one of the 
most diffuse structural typologies of historical buildings both of Eastern and Western architecture. 
Moreover, the growing interest in the preservation and rehabilitation of historical constructions has 
created a need for the development of new eff icient tools for the analysis and the evaluation of the 
load-bearing capacity of these structures. Finally, the study of masonry vaults should take into 
DFFRXQW�WKH�HVVHQWLDO�RI�WKH�³PDVRQU\´�material- i.e. heterogeneity, almost no resistance to traction 
combined with a good compressive strength and a high friction coeff icient, as well  as the overall  
importance of the geometry for achieving the equilibrium.  

However, at present only a limited number of available FE codes (e.g. Diana ±TNO Delft)  
contains specific modules for analyzing masonry structures and, as concerns large masonry vaults, 
such a codes use, in the framework of an incremental procedure, continuous elastic-plastic-
damaging constitutive models, so producing very heavy and often not completely reliable 
computational models. 

As it is well  known, the history of the theory of curved masonry structures as exposed for 
instance in the classical treatise by Benvenuto [1], is not based on the developments of the theory of 
elasticity. As a matter of fact, tKH� ILUVW� ³VFLHQWLILF´� JUDSKLFDO� DWWHPSWV� IRU� WKH� VWXG\� RI the 
equilibrium of masonry domes go back to the early 18th century and are due to, e.g., Bouguer 
(1734), Bossut (1778) and Mascheroni (1785) who stated simple 1D equilibrium equations, 
neglecting the role of circumferential forces. Anyway, what appeared clear from the beginning was 
that cracking occurs on curved masonry elements in presence of self-weight and at very low level of 
tensile stresses. In this context, a considerable improvement in the analysis of spherical domes was 
achieved when Levy (1888) proposed a graphical analysis aimed at finding the circle on which 
circumferential forces vanish. Nowadays it can be aff irmed (Huerta [2]) WKDW�³the modern theory of 
limit  analysis of masonry structures, which has been developed mainly by Heyman [3] is the tool to 
XQGHUVWDQG�DQG�DQDO\]H�PDVRQU\�VWUXFWXUHV´� 

For these reasons, to evaluate the load-bearing capacity of masonry shells, in a series of 
papers [4-6], the Authors have dealt with the limit analysis of such kind structures. They have 
developed a two steps approach: 
x In the first step, in order to take into account the actual mechanical properties and the 

heterogeneity of unreinforced masonry, macroscopic strength domains have been obtained either 
by a suitable application of the homogenization theory [4] or by means of a compatible approach 
[5], in which each brick was supposed interacting with its six neighbors by means of rigid-plastic 
interfaces with frictional behavior representing mortar joints. In this latter case, a sub-class of 
possible elementary deformations was a-priori chosen to describe joints cracking under in- and 
out-of-plane loads. Suitable internal macroscopic actions were finall y applied on the boundary of 
the Representative Element of Volume (REV). Several examples consisting of single and double 
curvature elementary cells were analyzed, obtaining, for each REV inspected, in- and out-of-
plane homogenized failure surfaces to be used at a structural level. 
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x In the second step, the 3D structural limit analysis problem was solved assuming masonry as an 
orthotropic homogeneous material and adopting an upper bound approach, discretizing 
homogenized masonry by means of six-noded rigid infini tely resistant wedge elements 
interacting with rigid-plastic interfaces. In this way, internal power dissipation was possible only 
at the interfaces between wedge adjoining elements. Entire vaults either in absence or in 
presence of FRP reinforcements were analyzed in detail, comparing results with existing 
li terature and alternative FE approaches [6]. 

One of the most popular advantages of limit analysis is that the collapse multiplier does not 
depend on load history. However, limit analysis is incapable to provide any information about 
deformations and displacements near failure. To circumvent this critical drawback, in [7], a 3D 
model for the evaluation of the non-linear behavior of masonry double curvature structures was 
presented. In such approach, the heterogeneous assemblage of blocks was substituted with a 
macroscopicall y equivalent homogeneous non-linear material. At the meso-scale, similarly to the 
limit analysis case, a curved running bond REV constituted by a central block interconnected with 
its six neighbors was discretized through a few six-noded rigid wedge elements and rectangular 
interfaces. Non linearity was again concentrated exclusively on joints reduced to interfaces, 
exhibiting a frictional behavior with limited tensile and compressive strength with softening. The 
macroscopic homogenous masonry behavior was then evaluated on the REV imposing separately 
increasing internal actions (in-plane membrane actions, meridian and parallel bending, torsion and 
out-of-plane shear). This simplified approach allows estimating heuristicall y the macroscopic 
stress±strain behavior of masonry at the meso-scale. The non-linear behavior so obtained was 
subsequently implemented at a structural level in a novel FE non-linear code, relying on an 
assemblage of rigid infinitely resistant six-noded wedge elements and non-linear interfaces, 
exhibiting deterioration of the mechanical properties. Several numerical examples were analyzed, 
consisting of different typologies of curved masonry structures, comparing results with existing data 
and additional non-linear FE analyses conducted with commercial codes. In addition, a simplified 
model to be used in common design practice was proposed, relying in performing at a structural 
level a preliminary limit analysis ± which allows to identify the failure mechanism ± and 
subsequently in modeling masonry through elastic elements and non-linear interfaces placed only in 
correspondence or near the failure mechanism provided by limit analysis.  

The aim of the present contribution is to review the proposed methods and criticall y assess 
they computational eff iciency and reliability by a systematic comparison with existing experimental 
tests and with the results provided by available FE programs. 
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1. General

At present the development and perfection of the prestress identification techniques are impor-

tant problems of solid mechanics. Over the last two decades we may see an evident tendency for the

prestress identification techniques to shift away from semi-destructive methods towards promising

non-destructive method. One of the most efficient nondestructive methods if acoustical method. Even

in the limits of the linearized model, the solving of the identification problem of the heterogeneous

prestress state can be realized only on the basis of solving the inverse elasticity theory problem with

variable characteristics, which is non-linear and ill-posed problem. At that even for the influence es-

timation calculations, the elasticity theory problems with variable characteristics must be solved, and

that is possible only with use of computing techniques, for example the finite element method. In the

present paper the direct and inverse problems of the steady-state vibration of a thin elastic isotropic

plate with heterogeneous prestress field are studied.

On the basis of the general problem formulation for the 3-dimensional prestressed body [1]

the various direct problems formulations for the thin plate are constructed; at that the in-plane and

the out-of-plane vibration regimes are considered. The frequency response functions for different

plate points are obtained. The investigation of the prestress level influence on the frequency response

functions is made. The discrepancy of the frequency response functions turned out to be sufficient to

reconstruct the prestresses; the discrepancy is most significant nearby the resonant frequencies [4].

The inverse problem on the identification of the heterogeneous 2-dimensional residual stress

state (i.e. of the three components σ0

11
(x1, x2), σ0

22
(x1, x2), σ0

12
(x1, x2) of the prestress tensor satisfy-

ing the equilibrium equations) in the rectangular plate is regarded. As the additional information the

data on the displacement field on the contour part under the loading was used, in the set of points, for

several vibration frequencies [3].

The new technique of the plane heterogeneous prestress state is proposed which lies in expres-

sion of the unknown prestress components in terms of Airy stress function which is presented as a

combination of the mutually otrhogonal biharmonic polynoms in the area of the plate section. The

inverse problem solving is reduced to the iterative process. At every step of the process the direct

problem and the ill-conditioned system of linear algebraic equations are solved. For solving this

system the Tikhonov regularization procedure was used [2].

The numerical calculations of the direct and inverse problems solving were made using the

Finite Element Method in the package ”‘FreeFem++”’ and programming language ”‘Fortran”’. The

series of numerical experiments on the identification of the 2-dimensional heterogeneous prestress

state in the rectangular plate is conducted. The most auspicious loading regimes and frequency ranges

for the identification procedure are given.
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1. Introduction

During impulsive loading of metallic thin-walled structures, material damage on micro-structural

levels can develop leading to loss of integrity. Excessive localization and dependence of mechanical

response on substructure sizes (i.e. size effects) caused by softening and damage can be captured

by introducing gradients of either plastic strain or damage parameter fields. Adapted from the ap-

proach for plastic continuum by Dimitrijevic and Hackl [1], a gradient-enhanced damage model [2]

for dynamic finite element computation of viscoplastic thin-shell structures is proposed. Void nucle-

ation and growth within substructures will be taken into account via a free energy function, which

is enhanced phenomenologically in terms of a non-local damage variable and its gradient on the

mid-surface of the structures. This makes necessary to introduce gradient parameters in terms of

a substructure-related intrinsic length-scale and a relationship between non-local and local damage

variable.

In this paper, a dynamic thin-shell elastic theory proposed in [3, 4] is chosen to integrate the

presented gradient-enhanced model into the finite element program FEAP [5] to capture large dis-

placements and finite rotations. Local constitutive laws considering viscoplastic behavior, isotropic

hardening and isotropic ductile damage leading to softening in Velde et al. [6] are employed. The

performance of the proposed approach is demonstrated through some numerical simulations of shock-

wave loaded plates, which are validated by comparison with the experimental results [7]. The influ-

ence of spatial gradient of loading on the material behavior within a macroscopic continuum element

will be also discussed.

2. Non-local damage of shell structures

It is assumed that the dynamic effect due to non-local variable can be neglected. Consequently,

the kinetic energy is defined in the standard manner. The enhanced free energy Ψ̃ is then defined by

Ψ̃ (Φ) = r : e +
1

2
cd ‖∇ϕ‖

2 +
βd

2

(

ϕ − γd

∫

d dξ

)

2

, with ϕ =
∫

h
+

h−

d̃ dξ(1)

where Φ := (x; t, ϕ),x, t, ϕ denote respectively a position vector on the mid-surface, a director, a

non-local variable; cd, βd, γd denote parameters; r, e denote vectors of effective resultants and strain

measures respectively.

With this, the potential energy writes

P (Φ) =
∫

A0

Ψ̃ (Φ) dA0 − Pext (Φ)(2)

where Pext (Φ) is the potential energy of the external loads.

Following [1], an evolution equation of non-local variable ϕ can be derived as

βd

[

ϕ − γdd̄
]

− cd∇
2ϕ = 0, with d̄ =

∫

h
+

h−

d dξ(3)

For local constitutive laws, St. Venant-Kirchhoff law of non-linear hyperelasticity and a ductile dam-

age model coupled with isotropic hardening and viscoplasticity given in [6] are used, assuming strains

to be small.
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3. Numerical results

An aluminium plate with 553 mm diameter and 2 mm thickness is subjected alternately three

times to shock waves until failure occurs in the plate centre. The deflections of the plate center in

Figure 1 are calculated for two different finite element meshes. The damage parameter and equivalent

plastic strain evolutions at the bottom of the plate center are depicted in Figure 2. The preliminary

numerical results match well with experimental ones observed in Stoffel (2007).
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Figure 1. Deflections at plate center.
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Figure 2. Damage and equivalent plastic

strain at the bottom of the plate center.

4. Conclusion

This work proposes a non-local damage model for viscoplastic thin-shell structures subjected

to shock waves. The presented approach allows to remove pathological mesh dependence and with

this numerical difficulties occuring in softening and damage phenomena.
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Università Politecnica delle Marche, Ancona, Italy
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École Polytechnique, Palaiseau, France

1. Introduction

Higher order gradient continuum theories in linear and nonlinear elasticity have recently raised

the interest on many scientists, since modern technologies involving multi-scale materials exhibit size

effects and a strong dependence on internal (material) lengths. A possible generalization of Cauchy

model has been proposed in the pioneering works by Germain, see [5], in which the stored energy is

assumed to depend both on the strain and on the strain-gradient.

In this paper we derive a second gradient plate model starting from the three-dimensional second

gradient linearized elasticity by means of the asymptotic expansion method.

The asymptotic analysis is a widely used technique for the formal derivation and justification

of classical theories of thin structures, starting from the classical three-dimensional elasticity, see, for

instance, [3]. In order to derive the Reissner-Mindlin plate model through an asymptotic analysis or

variational convergence, it has been proved that we need to generalize the stored elastic energy adding

some appropriate second gradient terms, see [6], or use a different continuum model as starting point,

like the micropolar continuum, see [1].

2. Statement of the problem and main results

Let ω be a domain in R
2 and let γ0 = ∂w. Let 0 < ε < 1 be a dimensionless small real parameter

which will tend to zero. We define Ωε := ω×
(

− εh

2
, εh

2

)

, Γε

0 := γ0 ×
[

− εh

2
, εh

2

]

, Γε

±
:= ω×

{

± εh

2

}

.

We note with xε = (x̃ε, xε

3) ∈ Ωε, with x̃ε = (xε

α
). We assume that the set Ω

ε

is the reference

configuration of a second gradient linearly elastic plate of thickness εh and middle surface ω. We

study the physical problem corresponding to the mechanical behaviour of a second gradient plate.

The plate is completely clamped on Γε

0, i.e., uε

i
= 0 and ∂ε

n
uε

i
= 0 on Γε

0, where ∂ε

n
is the outward

normal derivative along the boundary Γε

0. Moreover, we suppose that the plate is subjected to body

forces f ε

i
∈ L2(Ωε) and surface forces g±,ε

i
∈ L2(Γε

±
). We assume that the plate is constituted by

an isotropic homogeneous second gradient linearly elastic material, characterized by seven elastic

moduli, see [4]. The displacement field u
ε = (uε

i
) satisfies the following variational problem defined

over the variable domain Ωε:

(1)

∫

Ωε

{

σε

ij
(uε

)eε
ij
(vε

) + pε
ijk
(uε

)∂ε

k
eε
ij
(vε

)
}

dxε

=

∫

Ωε

f ε

i
vε
i
dxε

+

∫

Γε

±

g±,ε

i
vε
i
dΓε,

for all vε ∈ V (Ωε) := {vε = (vε
i
) ∈ H2(Ωε;R3); v

ε = 0, ∂ε

n
v
ε = 0 on Γε

0}, where (σε

ij
) is the

Cauchy stress tensor, (pε
ijk
) is the double stress tensor and eε

ij
(uε) :=

1

2
(∂ε

i
uε

j
+ ∂ε

j
uε

i
).

In order to study the asymptotic behaviour of the solution of (1) when ε tends to zero, we

apply the usual change of variables (see [3]) and we rewrite the so-called rescaled problem on a fixed
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domain Ω := ω ×
[

−h

2
, h
2

]

. We look for the formal a priori asymptotic expansion of the solution:

u(ε) = u0 + ε2u2 + ε4u4 + . . . . The limit displacement field u
0 takes the following form:

u0
α
(x̃, x3) = x3ϕα

(x̃), u0
3(x̃, x3) = w(x̃),

which represents, from a mechanical point of view, the Reissner-Mindlin plate kinematics. The pri-

mary unknowns w and ϕ = (ϕ
α
) satisfy the limit variational coupled problems:

(2)

∫

ω

h [−(C1∂ββw + C2∂βϕβ
)∂

αα
η3 + 2µ(∂

α
w + ϕ

α
)∂

α
η3] dx̃ =

∫

ω

qη3dx̃,
∫

ω

h [(C3∂ββw + C4∂βϕβ
) ∂

α
η
α
+ (C4(∂βϕα

+ ∂
α
ϕ
β
) + 2C5∂αβw) (∂βηα + ∂

α
η
β
)+

+ 2µ(∂
α
w + ϕ

α
)η

α
] dx̃ = 0

for all η ∈ V (ω) := {η = (η
i
) ∈ H2(ω;R3); η = 0, ∂

ν
η = 0 on γ0}, where q(x̃) :=

∫

h/2

−h/2
f3(x̃, x3)

g+3 (x̃) + g−3 (x̃) and the constants C
i

depend on the second gradient elastic moduli.

Remark. By using the simplified second gradient isotropic constitutive law proposed by E. Aifantis

(see [2]), who considers only two constants λ and µ and an internal length ℓ, equations (2) reduce to

the classical equations of the Reissner-Mindlin plate model.
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1. General 

The use of thin-walled tubular structures as an energy absorbing elements designed to 
improve passive safety, especiall y in automotive industry has been studied over three decades. The 
great majority of research works on thin-walled energy absorbing structures is focused on the 
influence of the structure material mechanical properties, absorber geometry and specific 
deformation mode on specimen crashworthiness parameters. The comprehensive review of existing 
experiment results can be found in articles [1-3]. 

2. Paper topic 

Following paper is focused on experimental and numerical studies of both: quasi static and 
dynamic axial crushing of thin-walled cylindrical tubes fill ed with foam. Two types of profiles were 
used in this study: single-walled and double-walled specimens. Single walled tubes were cut out 
from commercial mild steel tubing (R35) 60 mm in diameter and 1,0 mm in thickness. In case of 
double-walled specimens outer material remained the same, while inner profile was cut out from 
aluminium solid drawn tube (PA38) 30 mm in diameter and 1,0 mm in thickness. The D/t ratio of 
steel and aluminium tubes amounted correspondingly to: 60 and 30. Total length of single-walled 
and double-walled specimens was 200 mm. The specimens geometry is depicted in fig. 1. 
Dimensions were selected in accordance to previous results [4], which showed that for these ratios, 
steel tubes should deform in diamond mode and aluminium tubes should collapse in axisymmetric 
(concertina) mode. 

�
���������	
��	���	�	�����

The polyurethane foam (ISO foam RR 3040) was used to fill  the tubes. After the mass of 
foam reagents required to obtain given density was poured into a tube, its ends were sealed to 
prevent the expanding foam from free discharge. Descripted methodology allowed to obtain 
average densities of polyurethane foam used as fill er at the level between 50 and 240 kg/m3. 

3. Results 

Dynamic and static experiments were compared. Following parameters were analyzed: mean 
crushing force, relative crushing distance and specific energy absorption. Two main deformation 
modes were identified: diamond (asymmetric) and concertina (axisymmetric). The deformation 
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mode is an effective indicator of energy eff iciency, which result from strong connection between 
their formation and energy dissipation mechanism. The first mode was observed for empty and for 
the low density foam-fill ed specimens. The second mode occurred for specimen with foam density 
ρ > 80 kg/m3. Mixed deformation mode, e.g.: two diamond folds, and four concertina folds, 
occurred for the fill er density range 50 – 80 km/m3(fig. 2). 

�
Fig 2. Specimen deformation modes. 

a) diamond (symmetric); b) concertina (axisymmetric); c) mixed 

4. Conclusion 

Conducted experiments allowed to draw conclusion, that crashworthiness abilit y increase with 
foam density. The investigation of the experimental data revealed, that double walled tubes have 
greater energy absorbing abilit y. The dynamic non-linear simulations were carried out by means of 
PAM-CRASH™ explicit code. For a better understanding of the crushing process real and 
numerical experiments were compared (fig. 3) Computational crushing force, plastic hinges 
locations and specimens post-crushed geometry found to be compatible with the real experiments. 

�
Fig 3. The comparison of numerical and real specimen deformation mode 

The task is co-financed by the European Union under the European Social Fund. 
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DUAL-MIXED hp FINITE ELEMENT MODEL

FOR ELASTODYNAMIC PROBLEMS OF CYLINDRICAL SHELLS
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1. Preliminary

In finite element analyzes of linear elasticity problems, significant numerical difficulties can be

expected within the context of the primal-mixed and standard displacement-based methods. These

conventional methods exhibit especially poor numerical performances, for example when the plate

and shell problem becomes bending dominated for small thicknesses and when the Poisson ratio

is close to the incompressibility limit of 0.5. These phenomena are known as numerical lockings

(membrane-, shear-, incompressibility locking and so on). The complementary energy-based dual-

mixed finite element models are free from these locking problems and give reliable numerical solu-

tions especially in the computed stresses. The development for linear elastodynamic problems has

been motivated by the fact that we managed to construct robust and effective multi-field dual-mixed

hp plate and axisymmetric shell elements [1, 2, 3].

2. Variational formulation

The main objective is the derivation of a new dimensionally reduced cylindrical shell model,

based on a three-field dual-mixed variational principle, for elastodynamic problems. In the linear

theory of elasticity its functional takes the form [4]

(1) F (σkℓ, u
k
, φs ) =

∫

t1

t0

(

H Rd −
̂K

)

dt ,

where

(2) ̂K (u̇
k
) =

∫

V

̂T dV =
1

2

∫

V

ρ u̇ku̇
k
dV

is the complementary kinetic energy of the whole elastic body and

(3)

H Rd (σ
kℓ, u

k
, φs ) = −

∫

V

̂U dV +

∫

Su

ũ
k
σkℓn

ℓ
dS

−

∫

V

[

u
k

(

σkℓ

;ℓ + b k
)

− φsǫ
kℓs

σkℓ

]

dV

is the three-field dual-mixed Hellinger–Reissner functional of elastostatics [3]. Here V denotes the

volume of the body in the undeformed configuration, the surface S = S
p
∪S

u
, with S

p
∩S

u
= ∅, is the

boundary of V , ǫ
kℓs

is the covariant permutation tensor and ũ
k

is the displacement vector prescribed

on the surface part S
u

with outward unit normal n
ℓ
, as well as bp and ρ stand, respectively, for the

density of the body forces and the material, and t ∈ [t0, t1] defines a closed time interval (t0 and t1
are two arbitrary instants of time). The fundamental variables of the functional (1) are the not a priori

symmetric stress tensor σkℓ, the displacements u
p

and the rotations φs. The complementary strain

energy density function ̂U is defined by

(4) ̂U
(

σkℓ

)

=
1

2
σpqε

pq

(

σkℓ

)

.
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For linearly elastic materials the symmetric strain tensor ε
pq

can be obtained from the inverse stress-

strain relations (Hooke’s law)

(5) ε
pq

= C
pqkℓ

σkℓ in V ,

where the fourth-order tensor C
pqkℓ

with symmetry properties C
pqkℓ

= C
pqℓk

= C
kℓpq

is the elastic

compliance tensor. This three-field dual-mixed method can be considered as a generalization of the

Hellinger–Reissner-type variational principle [4]. The solution of the linear elastodynamic problem

can be characterized as the unique stationary point of the functional (1) over the space of all vector-

fields u
p

, φs and all a priori non-symmetric stress fields σkℓ satisfying the stress boundary conditions

(6) p̃ k = σkℓn
ℓ

on S
p
,

where p̃ k are prescribed surface tractions on S
p

with outward unit normal n
ℓ
. The initial conditions

to (1) are

(7) u
k
(t = 0) = u

k
(t0) =

0u
k
, u̇

k
(t = 0) = v

k
(t0) =

0u̇
k
= 0v

k
in V ,

as well as δu
k
(t0) = δu

k
(t1) = 0 are valid (δ denotes the variational operator).

3. Cylindrical shell model

The three-field dual-mixed functional (1) is applied to elastodynamic problems of axisymmet-

rically loaded thin cylindrical shells. Employing truncated power series expansions, the independent

variables, i.e., the stresses, the rotations and the displacements are approximated by polynomials of

first- and second-degree in the thickness direction. An important property of the shell model is that

the classical kinematical hypotheses regarding the deformation of the normal to the shell mid-surface

are not applied.

The number of the independent stress components is reduced by a priori satisfaction of the

prescribed surface loads on the inner and outer surfaces of the shell and by the elimination of the

rotations. This procedure results in a modified dual-mixed variational principle for the time-dependent

displacements and stresses with weakly imposed symmetry in the transverse direction.

A dual-mixed hp finite element model with stable polynomial stress- and displacement inter-

polation and C0 continuous normal components of stresses is constructed for bending-shearing prob-

lems, using unmodified three-dimensional inverse stress-strain relations for linearly elastic materials.
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1. Introduction

Low-order plate bending and shell elements are known to suffer from transverse shear locking.

That is, shear strain components derived from interpolated nodal displacements contain parasitic con-

tributions, which may lead to an excessive overestimation of the element stiffness. Assumed strain

fields obtained from specific strain interpolation schemes are employed to reduce the parasitic portion

of strain energy. Dealing with distorted (non-rectangular) elements, a decisive feature is to apply

natural strain components ε
(g)

αβ
(with respect to the natural element base vectors g

α
(ξ, η)) for inter-

polation [1]. Modified interpolation schemes have been used for the elimination of in-plane shear

locking [2].

2. Strain interpolation

These former approaches are recast to obtain new four node (linear and non-linear) membrane

and shell elements. To pass the in-plane patch test, we apply centrical strain components ε
(o)

αβ
(with

respect to the base vectors o
α
= g

α
(0, 0) at the element center) instead of natural ones in connection

with skew coordinates1 ξ̄γ . The latter derive from natural curvilinear coordinates ξγ via dξ̄γo
γ
=

dξγg
γ
. This leads to an assumed strain field,

(1)















ε̄
(o)

11
(ξ̄1, ξ̄2) = γ1 + γ4 ξ̄

2

ε̄
(o)

22
(ξ̄1, ξ̄2) = γ2 + γ5 ξ̄

1

ε̄
(o)

12
(ξ̄1, ξ̄2) = γ3

The coeffitients γ
n

are derived from displacement compatible strain components ε
(o)

αβ
,

(2) γ1,4 =
1

2

[

ε
(o)

11
(0, 1)± ε

(o)

11
(0,−1)

]

, γ2,5 =
1

2

[

ε
(o)

22
(1, 0)± ε

(o)

22
(−1, 0)

]

, γ3 = ε
(o)

12
(0, 0)

3. Enhanced and mixed formulations

In some sense, the formulation is complementary to the enhanced assumed strain approach of

Andelfinger & Ramm [4]. Translated to the concept of skew coordinates, their enhanced strain field

reads

(3)















ε̃
(o)

11
(ξ̄1, ξ̄2) = α1 ξ̄

1 + α6 ξ̄
1ξ̄2

ε̃
(o)

22
(ξ̄1, ξ̄2) = α2 ξ̄

2 + α7 ξ̄
1ξ̄2

ε̃
(o)

12
(ξ̄1, ξ̄2) = α3 ξ̄

1 + α4 ξ̄
2 + α5 ξ̄

1ξ̄2

Together, (1) and (3) constitute complete bilinear polynomials. Consequently, for linear problems

and regular meshes, both approaches yield coincident results. In the nonlinear regime, substantial

1Skew coordinates have been introduced in the context of hybrid stress membrane elements [3].
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improvements can be achieved employing a modified mixed approach. That is, the assumed strain

field (1) is supplemented by an assumed stress field

(4)















σ
(o)

11
(ξ̄1, ξ̄2) = β1 + β4 ξ̄

2

σ
(o)

22
(ξ̄1, ξ̄2) = β2 + β5 ξ̄

1

σ
(o)

12
(ξ̄1, ξ̄2) = β3

According to the Pian-Sumihara approach [5], stress parameters β
n

are obtained from a coupled equi-

librium condition deriving from the Hellinger-Reissner variational principle. Conventional mixed

formulations make use of equilibrium conditions deriving from the Hu-Washizu principle to calculate

stress (β
n
) and strain parameters (γ

n
) in turn of the equilibrium iteration, see [6] and [7] and refer-

enced therein. In contrast, we calculate γ
n

directly from (2) which appears to be computationally

significantly more efficient.

4. Results

Numerical results are obtained from a total Lagrangian shell element implementation oriented at

[7] and applied to a common set of benchmark examples involving smooth and non-smooth membrane

and bending dominated problems with regular and distorted meshes. The in-plane components of the

Green-Lagrange strain tensor are treated according to the assumed centrical strain (ACS) scheme (1),

the enhanced assumed strain (EAS) scheme (3), the mixed approach of reference [7], and the modified

mixed approach. The increased accuracy of the skew coordinates approach with respect to in-plane

deformations of distorted meshes has already been reported in [6] and is reproduced here. For regular

and moderately distorted meshes, ACS and EAS elements yield virtually coincident results and a

similar convergence behavior. The computational efficiency of mixed formulations in geometrically

nonlinear problems is demonstrated in [7]. That is, mixed elements tolerate significantly larger load

steps compared to enhanced and assumed strain elements and exhibit a superior convergence behavior.

However, due to the large number of internal parameters (14 stress and 14 strain parameters are used

in [7]), each single equilibrium iteration is time and memory consuming. This is in contrast with the

modified mixed formulation. Its simplest implementation involves just 5 stress parameters.
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1. Introduction 

In this note the main objects under consideration are periodicall y layered thick plates. It is 
assumed that every layer is made of two various components being linear-elastic homogeneous and 
isotropic materials, cf. Figure 1. 

 

l 

x=x1 

x3 

H 

x2 
stratified plate 

 

Figure 1. A fragment of a periodicall y stratified thick plate. 

Let us assume that the plate under consideration is described in the coordinate system Ox1x2x3. 
Denote: the time coordinate t; x≡x1; ∂α≡∂/∂xα, α=2, 3; ∂≡∂/∂x; x≡(x2,x3). Let H be the constant plate 
thickness along the x-axis. It is assumed that the plate is unbounded along the xα-axes. The plate 
occupies the region Ω≡(0,H)×R2. The plate under consideration consists of p layers, 1/p<<1, with 
thicknesses l. Every layer is made of two homogeneous, isotropic materials, which have material 
properties (ER, GR, ρR) for a reinforcement and (EM, GM, ρM) for a matrix. The thickness of the 
reinforcement part of the layer is described by lR and of the matrix part – by lM, cf. Figure 2. Hence, 
denote parameters ϕR�lR/l, ϕM�lM/l. 

The main aim of this contribution is to consider a problem of longitudinal vibrations along 
Ox1-axis of the periodicall y stratified thick plates under consideration. Hence, our considerations 
are restricted only to the displacement along x≡x1-axis, denoted by w. Governing equations of a 
proposed model are PDEs with constant coeff icients. This model is formulated under assumptions 
of the tolerance modelli ng developed for periodic or/and functionall y graded laminates, (cf. [1,2,3]). 

2. Modelling concepts and assumptions 

In the modelli ng some introductory concepts as: a slowly varying function ( ]),0([1 HSVd ), an 
averaging operation (<·>), shape functions, are used. 

To arrive at equations having constant coeff icients, we introduce the following assumptions. 
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The micro-macro decomposition is the first modelli ng assumption, in which it is assumed that 
displacements of the plate can be decomposed by 

(1) ,),(),,()(),(),( 2Rtxtxvxgtxutxw ∈+=  

where the new basic unknowns u and v are called the macrodisplacements and the fluctuation 
amplitudes, respectively, and satisfy the condition ]),0([),(),,( 1 HSVtvtu d∈⋅⋅ . 

Let us introduce a residual field for the above decomposition )())](([ 111 gvugvuKr tt +∂ρ−∂+∂∂≡ . 
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Figure 2. A periodicity cell  of the plate with a diagram of shape function g. 

The tolerance averaging assumption is the second modelli ng assumption, in which some 
conditions on this residual field are formulated: 

(2) ,0)(,0)( =><=>< xrgxr TT  

for a.e. Rx∈  and Rt∈ . 

3. Model equations 

Using the aforementioned concepts and assumptions, after some manipulations and denoting 
},{} ,,{} ,,{ MMMRRR GEKGEKGEK ∈∈∈ , the following averaged equations are obtained: 

(3) .)()(
,)(

2
12
1

11
2

12
1

111

vluKKvvKl
uvKKuK

ttRM
KK

ttRM

M

M

R

R ∂>ρ<=∂−++−∂><
∂>ρ=<∂−+∂><

ϕϕ
 

These equations stand with conditions (1) the tolerance model of vibrations for periodically 
stratified thick plates under consideration. It can be observed that neglecting the underlined terms in 
equation (3)2 we obtain governing equations of the asymptotic model. 

4. Remarks 

Using the proposed modelli ng method the governing equations of vibrations of the plates 
under consideration with non-continuous periodic coeff icients can be replaced by the equations of 
the tolerance model (3) with constant coeff icients.  

Applications of this model equations will  be shown separately. 

5. References 

[1] Cz. Wo�niak (ed) (2010). Mathematical Modelling and Analysis in Continuum Mechanics of 
Microstructured Media, Wyd. P�l, Gliwice, Poland. 

[2] Cz. Wo�niak, B. Michalak and J. J�drysiak (eds) (2008). Thermomechanics of Heterogeneous 
Solids and Structures. Tolerance Averaging Approach, Wyd. PŁ, Łód�, Poland. 

[3] Cz. Wo�niak and E. Wierzbicki (2000). Averaging techniques in thermomechanics of composite 
solids, Wyd. PCz, Cz�stochowa, Poland. 



272 38th Solid Mechanics Conference, Warsaw, Aug. 27–31, 2012
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The object of analysis is a thick functionall y graded laminated plate made of two materials. 
The scheme of the plate is shown in Fig. 1. 

 
Fig. 1. A cross section of a thick functionall y graded laminated plate 

 

The plate occupies region ;u¸
¹

·
¨
©

§�
2

,
2

HH
 in three space 321 xxOx , where ;  its midplane. It is 

assumed that H is smaller when compared to the smallest characteristic length dimension of ; . 
From the formal point of view the plate can be divided into thin layers with a constant 

thickness 
12 �

 
p

H
l , 1

1
��

p
. Each layer has a symmetry plane nlxx n r  01 , pn rr ,1,0 . 

In order to describe a distribution of component materials (matrix and reinforcement) we 

introduce two smooth even fraction functional coeff icients, ¸̧
¹

·
¨̈
©

§
»¼

º
«¬

ª��
2

,
2

1 HH
CRM , 

¸
¹

·
¨
©

§���
2

,
2

1 HH
x  � � � �1,01 �xRM  and � � 11

1 ��w xl RM , and RM MM �{1 . The distribution of 

components in the n-th layer is given by � �nR xM , � �nM xM , pn rr ,...,1,0 .  

For the sake of simplicity all  subsequent considerations will  be restricted to the heat 
conduction problem. 

The heat conduction coeff icients for both reinforcement and matrix materials are assumed to 

be orthotropic. Their principal values being denoted by D
Rk , D

Mk  in reinforcement and matrix 
material respectively, 3,2,1 D . 

The contact between adjacent laminas is assumed to be non-perfect. In contrast to the 
approaches described in [1] and in a large number of the related papers, we shall deal with a 
continuous distribution of interlaminar defects. 

The defects between adjacent laminas will  be modeled by a very thin interlaminar layers with 
thickness G  made of a certain isotropic material different then the lamina materials. Neither the 
unilateral contact between adjacent lamina analyzed in [3], nor material failure effects [2] are 
considered. Term ³very thin´ has to be understood, in the asymptotic sense, it means that under the 
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formal asymptotic limit passage 0ol  and also 0oG  quotient v
l
o

G
, where v is assumed to be 

positive ( 0!v ) and such that � � � �^ `11
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�� . Obviously constant v represents the 

fraction of the interlaminar material. 
The aim of this contribution is twofold. First setting aside the effect of interlaminar defects, 

we propose an asymptotic approach to the modelling of functionall y graded thick laminated plates 
introducing the concept of the local layer. In this case we arrive at the heat conduction model of a 
laminated plate in the form of PDEs with smooth functional coeff icients depending on smooth 
fractional coefficients � ��RM , � ��MM . Secondly we introduce the effect of interlaminar defects by a 
homogenization of the reinforcement material with an interlaminar defect material. The similar 
procedure is also applied to homogenization of the matrix material with an interlaminar defect 
material. 

On this way we obtain a new laminated structure which is functionall y graded and consists of 
new reinforcement and matrix material, properties of which are modified by an inretlaminar defect 
material.  

The last step for the modell ing procedure is the same as that in the procedure outlined above 
and leads to the model of a functionall y graded material without defects. 

On this way we arrive finall y to the PDEs with functional smooth coeff icients depending on 

argument ¸
¹

·
¨
©

§��
2

,
2

1 HH
x . These coefficients represent the local effective modules for a laminated 

thick plate which is functionally graded and takes into account the effect of defects. 
It has to be emphasized that the resulting smooth functional coefficients which can be referred 

to as local effective modules depend on: 

(1) Heat conduction orthotropic coeff icients D
Rk , D

Mk  in reinforcement and matrix material, 

3,2,1 D ,   specific  heats Rc , Mc in reinforcement and matrix material, respectively. 

(2) Fraction coefficients � �1xRM , � �1xMM , ¸
¹

·
¨
©

§��
2

,
2

1 HH
x . 

(3) Heat conduction isotropic coeff icient Ik  in interlaminar defects and specif ic  heat Ic in 

interlaminar defects. 
(4) Constant fraction coeff icient  v of the interlaminar defects. 
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PIEZOELECTRIC ACTUATION OF A PNEUMATIC ADAPTIVE SHOCK ABSORBER

G. Mikułowski, R. Wiszowaty and J. Holnicki-Szulc
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1. Introduction

The recent material technology developments provide to the market a number of new types of
materials per year, which encourage designers and constructors to utili zethem in a broad variety of
engineering branches. One of the more interesting group of materials, which are under extensivede-
velopment, are functional materials. Thefunctional materialsaredefined ashavingcoupling between
themechanical propertiesand non-mechanical fields i.e. electrical field, magnetic field, thermal field.
Examplesof such materialsare: electrorheological fluids, magnetrheological fluids, magnetostrictive
materials, shapememory alloys. Thiscategory containsalso piezoelectric ceramics, which isutili zed
for several decades for high frequency actuation in medicine, electronics and milit ary industries [1].
Oneof relatively new, andstill under intensivestudy, topic isusing thepiezo-ceramicsasmechanical
actuators in the rangeof low frequencies (up to 25 kHz) characteristic for structural dynamics range.

Thepiezo material has several advantagesthat make it very useful in the context of actuation of
mechanical structures(highforces, widefrequency range) but also it has somedrawbacks(diminutive
stroke, high voltagerequirements) that must be carefully analysed when asystem is to bedesigned.

At the beginning the piezo ceramic was offered by the manufacturers as monolithic material
able to convert mechanical energy into electrical and viceversa (straight and counter piezo-electric
effect) which was characterised by requirement for voltage in range of 2 kV [1]. During the past
two decades the progressin the technology of piezo materials allowed to fabricate multil ayer piezo
actuators where thepiezo material is in the shapeof thin layers isolated from each other by layers of
isolatingmaterial i .e. polymer or conventional ceramic [2]. Themain advantageof thesematerials is
the electrical supply level li mited to 200V. This voltage range allowed to consider thematerial as an
actuator for engineering applications that might besafe for potential users.

2. Scope of the work

In this paper a development of an piezo actuated gas shock-absorber is presented. The main
ideais to dissipate the kinetic energy of impact in the way that incorporates compressing gas in the
absorber. Therefore, the energy isconverted into internal energy of thegas. And thesecondstep is to
convert the accumulated energy into an irreversible form by releasing thepressureof the compressed
gas. In order to makethedevicereusable, thepressurised gas is transferred to a chamber insideof the
absorber, instead of releasing the gas out of the system. Another mode of operation of the device is
preserving the pressure differencebetween both sides of the piston ona predefined level and in this
way to provide ashock absorber with a controllable reaction force[3], ready to be implemented as a
part of asemi-activesuspension of awheel vehicleor an air vehicle.

3. Conducted research

This research program consisted of the following stages: 1. development of the concept of the
pneumatic shock absorber and numerical analysis, 2. design and tests of the piezo activated valve
dedicated to the considered application, 3. design and fabrication of the pneumatic shock absorber,
4. design and implementation of a control module 5. testing of the shock absorber under periodic
kinematic excitation, 6. testing of the absorber under impact loading.
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Figure 1. Mass flow rate vs inlet pressure
and pressure drop, numerics and experiment

Figure 2. Reactionforce vs piston displace-
mentfor various referencesignals

4. Development of the piezo electr ic valve

Thepiezo electric valve[3] wasdesigned in accordanceto therequirementsdefined onthestage
of thenumerical analysisof the case. The analysisof thevalvewasconducted in thefield of dynamics
and thermodynamicsof compressiblefluid with the assumption of onedimensional flow in stationary
conditions. Figure 1 depicts the massflow rate of the gas throughthe valve in the domain of inlet
pressure andthepressuredrop onthevalve. Thevaluedefined onthe conceptual stagewasdemanded
as thedesign parameter on thenumerical stage and accomplished in the experiment.

5. Control system and operation of theabsorber under periodic excitation

The control system for the shock absorber realized the ”on-off ” algorithm where the reference
signal was pressure of thegas in the absorber’s chambers [4]. The control algorithm was executed in
real-time. Figure2 depicts the resultsof the absorber’s operation acquired during periodic tests.

6. Concluding remarks

This paper described the results of a pneumatic adaptive shock absorber development. The
presented data acquired duringtestsof thepiezo actuated valve andtest of the absorber under periodic
excitationcan be treated as proof of the concept.
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1. Introduction 

Despite the prevalence of granular materials in the nature and in the industry, the physics of 
bulk materials still  fails to explain many phenomena connected with their seemingly simple 
behaviour. The potential fields of application of their unique properties still  remain highly 
unexplored. 

The proposed construction of a sandwich beam incorporates granular structure, that allows to 
change the damping characteristics of the beam, by varying the negative pressure value inside the 
structure (Fig. 1). An elastic sleeve fill ed with granules that covers the steel beam, allows to trigger 
the so-called jammed state of the material, by controlli ng the value of the partial vacuum. The 
intensified effect of the interlocking leads to forming the force chains and increase in an overall  
rigidity and hardness of the structure [2]. The distinctive feature of such a beam is the abilit y to 
control the dissipation energy value by varying the control signal, hence it enables for vibrations 
reduction.  

            

Fig. 1 Model of the beam with granular structure and it’s behaviour for different pressures 

2. Experiments and model 

The paper presents experimental and simulation results of the concerned beam. The model is 
intended for utili zing the control algorithms of vibrations. The influence of the underpressure value 
on the behaviour of the granular material was extensively examined during experiments. 
 Granular beam free vibrations tests were additionall y supported by uniaxial experiments 
carried out on speciall y performed cylindrical samples [3]. Basing on experimentall y acquired 
hardening curves, Young's modulus values were estimated for various values of generated 
underpressures. It is worth mentioning that special granular structures behave different according to 
the applied loading direction. Such phenomenon additionall y complicates controlli ng processes of 
damping properties.  
 Typical experimental characteristic describing variations of the Young's modulus values for 
different underpressures is depicted in Fig. 2. Basing on the depicted data we can observe 
reasonable possibiliti es of controlli ng the elastic range deformations of considered special granular 
structure. Similar phenomenon was also observed in the inelastic range [3]. 

The beam model was simpli fied to 3 layers: steel core (solid45), upper and lower granular 
structure covered with sleeve (solid45 with additional combin14 elements). 
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Fig. 2. ABS special granular structure Young's modulus variation for different underpressure values 

 As a preliminary approach to the problem it was assumed that the granular layers will  be 
simulated as nonlinear, elastic material subjected to deflections, resulting in a stresses greater then 
the yield strength. The multili near stress-strain relationship allows to more accurately model the 
plastic deformation of the material [1]. The tip displacement results for different values of 
underpressures and examined beam's lengths are presented in Fig. 3. 

                          

Fig. 3. Displacement of the tip of the beam and logarithmic decrement value. 

3. Summary 

Utili zing the properties of the underpressured bulk materials, mainly the possibilit y of 
adopting any shape depending on the boundaries, we can build a low-cost, eff icient dampers of 
different shapes. The proposed finite element model is consistent with the modified mathematical 
model of the beam free vibrations, covered by the equation  
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where internal damping µ(p) and resultant Young modulus Ez(p) are the functions of the 
underpressure value. 
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Dissipation of the energy in mechanical systems is a vitall y important engineering and 
scientific problem. Current stringent safety requirements enforce substantial change of methods of 
structural design and application of new solutions and technologies which ensure structural 
integrity.  

Currently applied passive safety systems are typicall y not equipped with control devices. 
Their dynamic characteristics remains unaltered and thus it is well  adjusted to a narrow range of 
actual loadings. In case of impact loading, it is highly advantageous to apply systems of Adaptive 
Impact Absorption (AIA ) [1], which are capable of fast change of the dynamic characteristics. 
Recent fast development of the material technologies and, in particular, development in the field of 
functional (smart) materials and electronic measurement and control systems had created new 
possibilities of practical applications of the AIA systems.  

During the adaptation process the choice of optimal control strategy is followed by adjustment 
of the dynamic characteristics of adaptive elements of the absorber. These elements can entirely 
made of functional materials (as e.g. shape memory alloys) or, alternatively, they can be equipped 
with controllable devices, so-called structural fuses, which provide controlled response of the 
element. Depending on type of applied control, the changes of structural parameters occur only 
once (usually before impact) or they are controlled in real time during the impact process. 

 The systems of Adaptive Impact Absorption can be effectively used to increase the level of 
safety during the action of the impact loading. In particular, very promising  results are obtained 
with the use of adaptive inflatable structures [2]. However, the possibilities of their practical 
applications are limited due to the lack methods allowing for the eff icient and fast control of the gas 
flow during impact.  

The presented work focuses on the pneumatic adaptive impact absorbing system equipped 
with a novel (patent application), high performance valve, which utili zes bistable snap-through 
effect. Snap-through effects are mainly the subject of theoretical analysis and they do not find many 
practical engineering applications. The classical example of snap-through behaviour is the two-bar 
von Mises truss. The extension of the above effect to multilayered structure (multifolding system, 
c.f. Fig. 1) providing multiple folding sequences and equilibrium paths, which could be potentially 
applied in smart pneumatic structures, was a subject of earlier investigations presented e.g. in [3]. 

 

Fig.1. The multi-folding system and its equilibrium paths. 
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The controllable valve which utili zes bistable snap-through effect is equipped with two 
independent elastic shell elements with two stable configurations, which are aligned in the initial 
configuration such that the flow of the gas is totall y closed. Opening of the valve is performed by  
controllable snap-through (e.g. evoked by a the use of piezoelectric fibers) of the first shell element 
which creates the flow channel. Closing of the valve is performed by controllable snap-through of 
the second shell element which causes alignment of the both shells and blocks the gas flow. The 
examples of the preliminary analyses of the snap-through effect of shell elements are depicted in 
Fig.2. 

 

Fig. 2. Stable configurations obtained as a result of the snap-through of shall  element shaped as part 
of the cylinder or hyperbolic paraboloid. 

The above concept can be also used to design a multi-stage valve in the form of matrix of 
elastic shell elements, which are aligned in the initial configuration such that they totall y block the 
gas flow (Fig.3). Control of the valve opening is performed by the sequentiall y controlled snap-
through of chosen shell elements which allows for opening or closing of the appropriate number of 
flow channels. Recovering the initial configuration is conducted by controllable snap-back of shell 
elements or rotation of the valve assembly.  

 

Fig. 3. General view: absorber equipped with bistable valve, the valve composed of a matrix of 
shell elements. 

The proposed solution is characterized by large mass flow rate of the gas, small total mass and 
inertia of the device providing the possibility of fast opening and closing, which is required for 
realization of the optimal control strategy for the pneumatic absorbers.  
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1. Introduction 

Magnetorheological elastomers, also known as solid matrix-based magnetorheological 
composites, are a relatively new group of SMART materials. They are characterized by a reversible 
change of selected mechanical and rheological properties under the influence of an external 
magnetic field, a phenomenon called magnetorheological effect. These materials are particularly 
predisposed to applications connected with vibration damping and controlled energy dissipation. 
Recently, magnetorheological elastomers are often used as active vibration dampers [1]. If  such an 
application is to be effective, one should develop a constitutive model which describes the relations 
between mechanical and magnetic quantities. The most popular and simultaneously the simplest 
model used to describe MR elastomers is the Kelvin-Voigt model for a viscoelastic body [1]. The 
dependence on magnetic field is achieved by defining function of selected parameters (viscosity and 
stiffness). The authors proposed such a model and performed its identification.  

2. Material and sample manufacture 

The authors focused on examining the properties of a selected magnetorheological composite. 
MR composites belong to the material group which is vast and diverse because there are various 
possibiliti es of choosing the matrix material, the ferromagnetic fill er and additives. The material 
presented in this paper is based on the thermoplastic polymer matrix and the ferromagnetic fill er in 
the form of iron powder (several dozen micrometres in size). The components are mixed together in 
controlled conditions and the resulting material is shaped into plates which serve as the basis for test 
samples. The procedure is described in greater detail  in the authors’  previous works [2].  

3. Test stand 

The investigations of mechanical and magnetic properties of the selected magnetorheological 
elastomer were performed on a dedicated test stand. The test stand made it possible to load the 
samples in the way which can be described (approximated) as uniaxial pure shear (Figure 1.) 
 

 

 

 
Figure 1. A scheme of the test specimen. The 

directions of forces and magnetic field are visible. 
 

Figure 2. Kelvin-Voight model. 
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4. Results of experiments – compar ison with model 

The samples were subjected to cycli c shearing at various magnetic field values, for a constant 
frequency of 1 Hz and strain amplitude γa=0.025. The results were registered in the form of 
hysteresis loops in the τ-γ system (Figure 3). 

 

  
Figure 3. Comparison of the hysteresis loops 
obtained from the experiment and from the 

Kelvin-Voigt model. 
 

Figure 4. The graph showing how η and  
G parameters change as a function  

of magnetic field. 
 

The experimental results were used to identify the viscoelastic body model (Kelvin-Voigt model -
Figure 2). The model parameters were identified as G – elasticity and η – viscosity, these values 
depend on the magnetic field intensity. The identification results are shown in Figure 4. The 
comparison of the hysteresis loops obtained from experiments and calculated using the chosen 
model are presented in Figure 3. 

5. Summary 

The primary goal of the work was to analyse the magnetomechanical properties of 
magnetorheological elastomers, paying special attention to the possibilit y of their description using 
simple viscoelastic body model. The parameters of this model depended on the magnetic field 
strength H. It was proved that for the applied range of strain amplitude change γa and magnetic field 
intensities H, the Kelvin-Voigt model – with parameters dependent on the magnetic field – 
corresponds well  to the results of experimental investigations. 
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1. In tr oduction 

Elastic waves are generated by an actuator (one of the grid piezoelectric transducers (PZT)) 
and recorded using the remaining PZT transducers (from the same grid - Figure 1). The shape of 
system of PZT transducers, shape and number of PZT influence on the qualit y (sensitivi ty) and 
accuracy of detection of defects in the test of composite structures. An additional issue is the control 
and detection of failure sensors, which is discussed among other in the works [1, 2]. 

          

Figure 1. Examples of systems of PZT transducers. 

2. Detection of damage 

Figure 2 shows a comparison of the wave signal for the structure without any damage and 
disturbance in the propagation of the wave induced by delamination. The location of this damage is 
defined as follows: 

(1)
  

2

Tv
d g'  

where Qg is the velocity of wave propagation, 'T is the difference between the signal of the incident 
wave and the wave disturbed by the damage. 

The correlation coeff icient between the original and distorted signals was calculated for 
individual sensing paths in the time domain to get the perception to damage near the sensing paths. 
The damage index (D) is defined as: abD U� 1  

3. Optimization problems 

Optimization problems deal with the analysis of structures with some response (denoted by R) 
requirements. In general structures with actuators can be optimized using three computationall y 
different strategies. In the first, the most common optimization problem the objective function to be 
minimized is the response of the system, i.e.: 

(2)
  )( s

s
RMin  

The vector s denotes the set of design variables. 
The response tuning is the second problem. It can be treated as the alternative or sometimes 

equivalent optimization problem to the above: 
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In addition, as the third problem volume or weight minimization of a structure has been 
considered here, in which: 

(4)
  )( s

s
VMin  

The problem of shape optimization of piezoelectric transducers has been discussed among 
others in the work [3, 4]. 

Optimal location of sensors concerns the best location of sensors and their required number. 
To solve this problem, the optimization procedures have been applied. In addition, the information 
of composite structures and wave propagation in the material has been used. 

Simple methods have been used to find the best configuration of transducers. This is done by 
adding or removing one or more sensors and evaluated the relationship between the transducers, 
signal qualit y and accuracy of fault location in order to find the best combination. Development of 
methods of combinatorial optimization based on biological and physical analogy allows the use of 
such genetic algorithms, neural networks, simulated annealing, etc. 

Optimal location of sensors and actuators over a structure can be different for different criteria 
based upon: maximization of modal forces/moments applied by the PZT actuator, maximization of 
deflection of the host structure, minimal change in host structural dynamics, desired host structural 
dynamics, minimization of control effort/maximizing energy dissipated, minimization of host 
vibrations, maximization of degree of controllability/observability of modes of interest, etc. 

 

Figure 2. The determination of damage location. 
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1. The inspection system

Long pipelines are often used in petro-chemical industry for transporting liquid and gaseous
substances. These pipes need to be regularly monitored and inspected for both safety reasons and
environmental impact control. Guided waves have been increasingly used in nondestructive evalu-
ations. Many researchers have been interested in the application of ultrasonic guided waves for the
nondestructive inspection of pipes [1, 2, 3]. Axisymmetric modes are preferred for the detection of
defects in pipes. Amongthesewaves, the torsional oneT(0,1) is theonly onewhosevelocity remains
constant with frequency. All the others suffer speed variations as the frequency changes which is
a major disadvantage for wave generators that could only generate longitudinal or flexural waves.
Besides, it keeps its speed constant and it propagates through pipes filled with liquid without much
leakage.

In thiswork, an inspectionsystem hasbeen designed and developed to excitethepipeunder test
with well -defined waves that propagate alongthe structure; and also to receive reflected signals from
features and damages encountered. The torsional mode was chosen to be generated by the system.
Thegeneration of torsional wavesisoperated by usinganumber of piezoelectric transducersclamped
aroundthe circumference of the pipe. The design processof the torsional waves inspection system
is presented. Time responses were examined for intact and damaged pipes. Then, experimental
tests have been performed ontwo pipes with different materials: PVC and steel. Some defects have
been machined onthese pipes. Their interaction with torsional waves has been proven by analyzing
experimental time responses. Subsequently, the Wave Finite Element Method (WFEM) has been
used to construct a database of reflection coefficients from a rectangular defect with variable axial,
circumferential and thicknessextents. Calculations was made depending onthe excitation frequency
with the torsional mode T(0,1) as incident wave. This aims to approximate defect sizes that were
already detected.

2. Experimental tests

The actuator and the sensor are mounted on a straight 3 m-long, 5 mm-thick, 140 mm outer
diameter PVC pipe without any defect. The actuator is attached at one end of the pipe; the sensor is
placed at 1 meter from the actuator. Fig. 1(a) shows the time record for a pipe with a defect. This
defect isasingle60mmradial cut. It is located half way from both endsof thepipe. When a3m-long
steel pipe is used, the wave can travel back and forth, reflecting itself several times at each end of the
pipe. This effect is visibleonFig. 1(b), with thesamekind of pulse as for theprevious example.

3. Defect sizing by WFEM

The Wave Finite Element Method (WFEM), which is a simple spectral method based on the
standard finite element (FE) formulation, can be applied to examinethewaveinteractionwith thelocal
defectsandthestructural features [4, 5]. To approximate thesizeof thedefect, the ideawasto build a
digital database containing the different probabiliti es of defect sizes that could exist while assuming
that it wasmodeled with aform similar to that shown in Figure2. Theparametersthat characterizethe
defect are ’a, b, c’ , which are axial extent, depth, andcircumferential extent respectively. Calculations
wasmadeby varying these threeparameters. The axial extent sweeps the interval [4-20] mmin steps
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Figure 1. Timesignal recorded :(a) from damagedPVC pipe, and(b) from damagedsteel pipe.

of 4 mm. The circumference of the pipewas dividedto 44 elements, the circumferential extent was
varied by eliminating an element in every step. Knowing that the pipe diameter is of 168mm, each
element measures12mm in the circumferential direction. Finally, the depth of the defect varies from
2 mm with a step of 3 mm until the whole pipe thicknesswhich is 11 mm. Refl ection coeffi cients
calculation was made depending onthe frequencyin the range[5-15] kHz. This latter corresponds
practically to the signal frequency at which the pipe under test was excited. The torsion modewas
consideredin the calculation process.

a

b

c

Figure 2. Damaged pipewith defect dimensions.
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1. Introduction 

Superelastic properties and transformation bands are often studied recently in shape memory 
alloys (SMA) under tension test. There are also some studies on SMA in compression, however the 
accompanying temperature changes were seldom taken into account [1]. In this research, quasistatic 
compression tests were carried out in room conditions on small  bar specimens, in the vicinity of the 
Af temperature, being very close to ambient one. The mechanical characteristics and the average 
specimen temperature variation were measured in a contact-less manner by a sensitive infrared 
camera. An influence of the strain rate and related temperature changes on the SMA 
thermomechanical loading-unloading EHKDYLRXU�LQFOXGLQJ�³FRROLQJ´�VWDJH�LV�GLVFXVVHG� 

2. Experimental results - mechanical and temperature characteristics 

An exemplary stress, strain and temperature dependence for a TiNi  SMA specimen 
compressed with 10-2s-1 strain rate is shown in Fig. 1. One can infer looking at the mechanical and 
temperature loops (left) that both the stress and the specimen average temperature increase as the 
material is loaded, which is directly caused by the martensitic forward transformation 
(reorientation) being exothermic. As the strain rate increases, one can notice a widening of the 
stress range and an increase in the peak temperature. Moreover, higher strain rate makes the 
temperature loops narrower, in such a way that in the case of the highest strain rate applied not 
shown here (10-1s-1), the both sections almost overlaps. During the unloading, the stress and the 
temperature obviously decrease, as the result of the endothermic reverse transformation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. TiNi SMA in compression cycle with 10-2s-1 strain rate.  
Stress and temperature vs. strain (left) and time dependence (right). 

 
Another part of the experiment was the TiNi SMA compression with cooling down to the 

ambient temperature imposed between loading and unloading. The goal was to investigate the run 
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of the reverse transformation, independently of the thermodynamical influence of the forward 
transformation. An exemplary mechanical loop coupled with the specimen temperature variation, 
obtained for the same strain rate equal to 10-2s-1 is shown in Fig. 2. Once the loading ends, the 
specimen is kept in the machine with constant strain and after 5 min. the specimen is unloaded. 

 
Fig. 2. TiNi SMA in compression cycle with 10-2s-1 strain rate, cooled at maximal strain. 

Mechanical (left) and time (right) characteristics. 

3. Discussion. 

'XULQJ� WKH� H[SHULPHQW�� WKH� VXUURXQGLQJ¶V� WHPSHUDWXUH� UHPDLQHG� YHU\� FORVH� WR� WKH�Af which 
UHVXOWV� LQ� WKH� PHFKDQLFDO� ORRS¶V� SURILOH� �)LJ�� ������ 1DPHO\�� WKH� VSHFLPHQ� VKDSH� UHFRYHU\� LV� QRW�

perfect and therefore what we do encounter is a combination of superelasticity (SE) and shape-
memory effect (SME). The strain rate has a strong impact on SE-SME superposition; i.e., the higher 
the strain rate, the better the shape recovery and the greater participation of SE in favour of SME 
was observed. If we compare the residual strain in Fig. 1 and Fig. 2 we can say that the cooling 
strongly influences the shape recovery being in this case much smaller due to the thermomechanical 
coupling. The temperature profile tells us also that, despite constant strain rate, the martensitic 
transformation does not develop in the same manner: it slows down at the advanced stage of the 
forward transformation, which is particularly visible in the case of lower strain rates. The final 
temperature is different (usually smaller) than that at the beginning of the process which is 
enhanced if the compression is performed with cooling before unloading. This difference is 
probably caused by the fact that the heat of forward and reverse transformation is comparable but 
the heat outflux related to the elastic unloading and the exponential temperature drop during the 
cooling needs to be taken into account, too [2]. The discussed thermomechanical behaviour creates 
a new opportunity for shape memory alloys to be implemented as radiators. 
 
ACKNOWLEDGMENTS: This work was partially supported by the MNiSW project 501220837, and the NCN 
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1. Introduction 

Shape memory alloy (SMA) is expected to be applied as intell igent materials since it shows the 
unique characteristics of the shape memory effect (SME) and superelasticity (SE). Most SMA 
elements with using these characteristics perform cyclic motions. In these cases, fatigue of SMA is 
one of the important properties in view of evaluating functional characteristics as SMA elements. 
Fatigue properties of SME and SE are complex since they depend on stress, strain, temperature and 
time which are related to the martensitic transformation (MT). If  SMA is implanted by high energy 
ions, the thermomechanical properties may change, resulting in long fatigue li fe. In the present paper, 
the nitrogen ion implantation was applied to modify TiNi SMA wire surface and the influence of 
implantation treatment on the tensile deformation and bending fatigue properties is investigated.  

2. Transformation temperature 

The TiNi SMA wire of a diameter of 0.5 mm was implanted from two opposite directions by 
nitrogen ion beam with acceleration energy of 50 keV (See directions Ci in Fig. 4). The total doses of 
implanted ion were 5 î 1016 J/cm2 and 1 î 1018 J/cm2. The DSC thermograms for three kinds of wires 
with non-implanted surface, implanted with 5 î 1016 J/cm2 dose and implanted with 1 î 1018 J/cm2 
dose are shown in Fig. 1. If the dose of ion implantation increases, the reverse transformation 
temperatures As and Af increase. 

3. Tensile deformation property 

The stress-strain curves of three kinds of wires obtained by the tension test at room temperature 
are shown in Fig. 2. The stress-strain curve with non-implanted draws a hysteresis curve during 
loading and unloading, showing the SE. The curve with 5 î 1016 J/cm2 dose shows the partial SE. The 
curve with 1 î 1018 J/cm2 dose shows the SME. As observed in Fig. 1, if  higher dose of implantation 
is applied, the reverse transformation temperatures increase. Both upper and lower yield stresses 
therefore decrease and the SME appears in place of the SE. 

4. Bending fatigue property 

The relationships between the maximum bending strain and the number of cycles to failure for 
three kinds of wires obtained by the alternating-plane bending fatigue test at room temperature are 
shown in Fig. 3. The larger the maximum bending strain, the shorter the fatigue li fe is. If the 
maximum bending strain is 4 %, the fatigue lives of all  materials are almost the same. If  the maximum 
bending strain is small, the fatigue li fe becomes longer in the case of higher dose implantation. 

5. Fatigue fracture surface 

Figure 4 shows a microscope photograph of a fracture surface of a wire obtained by the fatigue 
test. In Fig. 4, Ci denotes the center of ion implantation and the point of the maximum bending strain. 
Fc denotes the initiation point of the fatigue crack. The crack nucleates at a certain point Fc on the 
surface of the wire and propagates towards the center in a sinuous radial pattern. Although small 
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cracks are observed in both sides of the wire, one single crack grows preferentiall y. Following the 
appearance of fatigue crack with a fan-shaped surface, unstable fracture finall y occurs. For 
non-implanted samples, the point Fc coincides with the point Ci and the fatigue life is short. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Relationships between the maximum bending strain and 
          the number of cycles to failure for three kinds of wires  
          obtained by the alternating-plane bending fatigue test  

Fig. 4 Microscope photograph of a fracture surface of a wire 
           ion-implanted by 5 î 1016 J/cm2 dose and 2 % of 
           maximum bending strain obtained by the fatigue test 

Fig. 1 DSC thermograms for three kinds of wires with non- 
             implanted, 5 î 1016 J/cm2 dose and 1 î 1018 J/cm2 dose 

Fig. 2 Stress-strain curves of three kinds of wires obtained b
           the tension test at room temperature 
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ACTIVE VIBROACOUSTIC CONTROL OF BEAMS AND PLATES WITH GENERAL

BOUNDARY CONDITIONS

Ł. Nowak and T. G. Zieliński

Institute of Fundamental Technological Research, Warsaw, Poland

1. Introduction

Active vibroacoustic control of beam and plate structures with arbitrary boundary conditions is

considered. The goal is to develop a method of minimizing sound radiation efficiency of such struc-

tures. Primary sound field arise as a result of vibrations, due to external disturbances. It is assumed

that the control system is compact - it does not contain any additional, ambient microphones. Piezo-

electric transducers, mounted on the surface of the controled object, are used as sensors and actuators.

Accurate numerical model of the considered structure is needed to determine optimal parameters of

the control system. Theoretical background and the results of numerical and experimental research

are briefly introduced.

Due to the fact that it is not possible to give an analytical solution of such problem in general

case, it is solved numerically. Eigenfrequencies and the corresponding mode shapes are found using

the finite element method. Basing on the derived results and the actuator/sensor equations, the piezo-

transducers locations that ensure optimal sensing/actuating abilities for specific vibration modes of

the structure are determined. The modes are selected taking into account fact that the main purpose

of the described study is to minimise acoustic field generated by the vibrating element. It is assumed,

that the piezotransducers are rectangle-shaped and their dimensions are given. The resultant radiation

efficiency of controlled, vibrating structure is estimated using the Rayleigh integral, assuming that the

element is placed in an infinite rigid baffle. Similar analysis is carried out for the beam structures,

but, instead of using FEM for modal analysis, one dimensional analytical solutions are applied.

2. Acoustic radiation of vibrating beam and plate structures

Due to the undertaken assumptions, classical thin beam and thin plate theories are used for mod-

elling. It is assumed, that vibrations of the structures are caused by external disturbances, that consist

of finite number of harmonic forces with different spatial distribution. The response of the structure

can be written as a sum of equivalent frequency components, each of which shape is modelled as a

finite sum of the eigenmodes. Radiated sound power is calculated independently for each frequency.

According to the initial assumptions described in the previous section, the Rayleigh integral is used to

calculate the far-field acoustic pressure distribution. Taking into account decomposition of the spatial

velocity distribution on the surface of the considered structure into the eigenmode vectors, following

expression for the radiated sound power at frequency f = ω

2π
may be written:

(1) Π =
ρoω

2

2πc0

∣

∣

∣

∣

∣

N
∑

n=1

[

∫

2π

0

∫ π

2

0

Ŵn

(
∫∫

S

φne−jkx sin φ cos θe−jky sin φ sin θdS

)

sin φdφdθ

]∣

∣

∣

∣

∣

2

,

where ρo and c0 are the density and the speed of sound of surrounding medium (air), respectively,

S denotes the area of considered structure in x and y coordinates, N is the number of considered

structural modes and the Ŵn is complex amplitude of mode n whereas φn denotes its normalized

shape function.

In the considered low-frequency range and for plate dimensions much lower than the acous-

tic wavenelgth in air, radiation patterns of structural modes (considered separately) are quite regular,
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a)

b)

Figure 1. Normalized amplitude of electic charge induced on a a) rectangle-shaped piezosensor, as a function

of its location on the surface of cantilevered beam for the first four vibration modes b) point sensor on a plate

surface for an example single vibration mode

close to monopole or dipole source patterns. The ,,dipole” modes are found to be very weak acous-

tic radiators. Those observations are important while developing the optimal strategy for the active

control system.

3. Determining the optimal parameters of the control system and experimental verification

To minimize radiation efficiency of the controlled structure the following steps need to be exe-

cuted. First, the parameters of the primary disturbance have to be estimated. Piezosensors are used to

determine the frequency components and corresponding complex amplitudes of their decomposition

into the structure eigenmodes. Then, the optimal feedback gain factors need to be computed for all

piezoactuators. The goal is to minimize the total radiated sound power, given by the Eq. (1).

The location of the piezoelectric components on the surface of the controlled structure deter-

mines the ability of the active control system to sense and control specific structural modes. For

that reason it is very important to properly choose positions of sensors and actuators, while develop-

ing system geometry. Results of an example analysis of sensitivity of different located piezoelectric

sensors to specific vibration modes is presented on Figure 1.

Different beam and plate structures with piezoelectric elements mounted on the surfaces were

used to verify experimentally conclusions obtained with theoretical and numerical investigations.
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1. Introduction 

Shape memory alloys (SMAs) are remarkable materials characterized by the thermomechanical 

properties of shape memory and superelasticity. The functional properties of an SMA appear based 

on the martensitic transformation (MT), and since the MT is sensitive to variations in temperature and 

stress and to their hysteresis, the deformation properties due to the MT are complex. Research up to 

now in this area has been mainly concerned with a full loop (or perfect loop) of the MT completion. 

But in practical applications, temperature and stress are likely to vary in various ranges. If SMA 

elements are subjected to loads with a subloop (or partial loop, internal loop) in which temperature or 

stress varies in an incomplete MT range, the conditions for the start and finish of the MT as in a full 

loop are not satisfied. It can be recognized from this that the subloop deformation behaviour of an 

SMA is of great importance for an accurate evaluation of the functional properties of SMA elements 

and for the design of such elements for practical applications. The present study investigates 

superelastic deformation behavior of TiNi alloy, in subloop loading test, in particular the 

characteristics of transformation-induced creep deformation in the stress plateau region under 

constant stress. Variations in the stress-induced martensitic transformation (SIMT) bands during 

deformation are observed using a microscope, and a thermograph is used to identify the temperature 

distributions on the surface of the tape specimen. The subloop creep deformation behavior is 

discussed in terms of the local deformations due to the SIMT. 

2. Transformation-induced creep deformation 

Figure 1 shows the stress-strain curve obtained from the creep test under a constant stress rate of 

0.5 MPa/s up to a strain of 2 % at the upper stress plateau, followed by a constant stress. In Fig. 1, the 

SIMT starts at a strain of 1.3 % (point A) in the loading process, under a constant stress rate. If stress 

is controlled so as to remain constant at its level for 2 % (point B), it initially fluctuates slightly before 

settling down to a constant 438 MPa at a strain of 3.5 % (point C). Strain then continues to increase to 

about 8 % (point D). This phenomenon of strain increase under constant stress is similar to what is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Stress-strain curve under stress rate of dσ/dt = 0.5 MPa/s 

till strain of 2 % followed by stress controlled to  remain 

constant 

Fig. 2 Variation in strain with passing of time in creep test 
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found with normal creep deformation. The explanation in this case would be that the SIMT causes the 

temperature to increase during loading up to a strain of 2 %, after which it decreases under a constant 

stress. Conditions are therefore satisfied for the SIMT to progress and strain increases. 

The relationship between strain and time is shown in Fig. 2. As can be seen in Figs. 1 and 2, the 

rate of increase in the strain rises sharply at the level of 1.3 %, following the start of the SIMT. Stress 

fluctuates slightly between strain levels 2 % and 3.5 % while strain increases rapidly. After a strain of 

3.5 % is reached, stress settles down to be constant and strain increases at an almost constant rate of 

6.5×10
-5
 s
-1
. Strain goes on increasing to about 8% before finally becoming constant. 

3. Progress of creep strain 

Figure 3 shows thermograms of the temperature distributions on the surface of a specimen, and 

Fig. 4 shows photographs of the SIMT bands. 

As can be seen from the temperature distributions, the SIMT process due to the exothermic 

reaction first appears at the two ends during loading at a strain level of 2 %, and then spreads toward 

the center where the bands combine into one, completing the SIMT. When the stress is held constant 

at the level reached for 2 % strain, the SIMT bands spread due to a decrease in temperature. 

Transformation heat is generated at each new point of advance in the SIMT process, which leads to a 

chain reaction in the SIMT, resulting in creep deformation. 

In Fig. 4, the SIMT bands in the photographs are tinted blue to enhance the visibility of the 

propagation progress. After first appearing at the two ends, the bands spread toward the center as 

stress is held constant. All of the SIMT bands photographed in Fig. 4 also appear in the same positions 

on the reverse surface of the specimen and can be considered as continuing throughout the cross 

section of the tape. This means that the area fraction occupied by the M-phase on each surface must 

be equivalent to the volume fraction occupied in the body as a whole. In this way, the volume fraction 

of the M-phase can be estimated from the measured area fraction of the SIMT bands. The relationship 

between the volume fraction of the M-phase and strain is shown in Fig. 5. The volume fraction of the 

M-phase increases in proportion to an increase in strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Thermograms of temperature distribution on the specimen 

surface under dσ/dt = 0.5 MPa/s up to a strain ε of 2 % 

followed by constant stress 

Fig. 4 Photographs of specimen surface at various s trains ε 

under stress rate of dσ/dt = 0.5 MPa/s up to a strain ε of 

2 % followed by constant stress 

Fig. 5 Relationship between volume fraction of M-ph ase and 

strain during creep deformation 
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1. Introduction

In the present paper the stochastic programming technique based on Gaussian Processes [1, 2] applied

to inverse problems in structural engineering, e.g. material parameters characterization and damage

detection is presented. The inverse analysis often uses a numerical model as an counterpart of exper-

iment in order to build the discrepancy function between experimentally measured and numerically

computed quantities, such as displacements, reaction forces, strains, accelerations, etc. If the numer-

ical model is complex the iterative minimization procedure becomes very expensive, therefore not

attractive from practical point of view or when the test has to be performed ’in situ’ (i.e. without a

computer which can handle heavy computations). The alternative is to use a surrogate which approx-

imates the behavior of the numerical model but is much simpler thus less expensive. The surrogate is

usually constructed as a ’black box’ where for the approximation the following methods, among oth-

ers, are commonly used: Radial Basis Functions (RBFs), Polynomials, Proper Orthogonal Decompo-

sition (POD) combined with RBFs, Artificial Neural Networks (ANNs) or Gaussian Processes (GP).

All listed here approximation techniques require the numerically computed responses (i.e. train-

ing samples) in order to build a smooth and accurate analytical approximation of the sought solution.

Ideally would be to use a method which need the smallest possible number of ’training’ points and

in the same time is precise and robust. The approximation method based on GP satisfies all above

mentioned requirements: it gives very good results when the number of training examples is limited.

Another important feature of GP is that it gives not only the approximation of the mean value of

sought parameter but also its standard deviation. This feature gives a possibility of automatic and

systematic improvement of the solution, because the computed standard deviation of the model pre-

diction provides a localization where the approximation is weak, (and therefore it points out where,

in the parameter space, the additional experimental or numerical data are necessary to improve the

approximation).

An important problem during the construction of the surrogate is usually a big number of data,

i.e. control parameters (e.g. material, geometrical features) and state parameters (measurable quanti-

ties). The probable correlations between the control variables as well as between the state variables

can be computed, and consequently used to reduce the number of model parameters, by the appli-

cation of Principal Component Analysis (which is a part of the proposed method). The presented

stochastic algorithm is formulated within Bayesian framework thus provides additional information

about the magnitude of correlation between state and control variables, i.e. the relevance of input-

output correlation. This is very important if one would like to exclude from the model the parameters

which not influence the measurable quantities (i.e. the measurable quantities are not sensitive to those

parameters).

The stochastic model reduction techniques based on GP have, however, one significant disad-

vantage, namely the Gaussian Processes are usually parameterized in terms of their covariance func-

tions. This makes it difficult to deal with multiple outputs, because ensuring that the covariance matrix

is positive definite is problematic. An alternative formulation is to treat Gaussian processes as white

noise sources convolved with smoothing kernels, and to parameterize the kernel instead (see [3]).

Using this approach, one can extend Gaussian Processes to handle multiple, coupled outputs.
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2. Application

In the present communication two examples are used to show the application of above described

model reduction techniques. The first example shows the application of multi-output GP to damage

detection in the structural elements (as beams and plates) through Wavelet Transformation [4, 5]

and Inverse Analysis. The second application shows the use of GP as numerical model surrogate in

characterization of glass and foil parameters in SGP and PVP laminated glasses [6, 7] through Digital

Image Correlation and Inverse Analysis [8].

In both examples GP based approximation serves as a surrogate of numerical model, which

in combination with iterative minimization algorithm (e.g. trust-region algorithm) gives very fast

and accurate results, both in damage detection and material model parameters identification. By

iterative comparing of experimental data to data obtained from the multi-output GP approximation

model the discrepancy is minimized and sought parameters (i.e. damage localization and size, as

well as material constants in laminated glass) can be vary fast identified, provided the surrogate is

appropriate constructed.

3. Summary

The GP approximation model which serve as a numerical model reduction is used here in com-

bination with Inverse Analysis to solve structural engineering problems, e.g. damage detection and

constitutive models identification. The work is mainly focus on the proper construction of the GP

model, namely on: (1) training process based on minimal number of training samples, by making use

of automatic samples selection through computed standard deviation of model prediction; (2) control

and state parameters compression based on PCA techniques; (3) control parameters reduction based

on input-output correlation; (4) proper construction of multi-output GP.
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1. Introduction

Heuristicevolutionarymethodsaregainingnowadayswidespreadpopularityamongresearchers
becausethey areeasyfor numericalimplementation,donotrequiregradientinformation,and onecan
easilycombinethis typeof algorithmwith any finite elementstructuralanalysiscode.Amongsuch
techniquesare also CellularAutomata. Cellular Automata(CA) are mathematicalidealizationof
a physical systemsin which the designdomainis divided into a lattice of cells, statesof which are
updatedsynchronouslyin discretetimestepsaccordingto somelocalrules.Theprincipleof theCA is
thatglobalbehavior of thesystemis governedby cellsthatonly interactwith theirneighbors.CA have
attractedresearchersfrom variousdisciplines.This concepthasbeenfoundattractive alsoin optimal
designbecauseof its simplicity andversatility andsinceCA methodologycanbe adoptedboth to
optimalsizingandtopologyoptimization. Theaim of this paperis to presenta novel CA approach
which canbeusedin topologyoptimization. Thenew efficient local updaterulesareproposedand
theperformanceof thenumericalalgorithmbasedon thepresentedconceptis discussed.

2. Local design rules for topology optimization

The idea of Cellular Automatais to replacea complex problemby a sequenceof relatively
simpledecisionmaking. In engineeringimplementationthis leadsto decompositionof considered
domaininto a set of cells which build an uniform lattice. The particularcell togetherwith cells
to which it is connectedform neighborhood,and it is assumedthat the interactionbetweencells
takesplaceonly within the neighborhood.The speciallocal rulesareselectedin order to control
evolution of eachneighborhoodstate.The rulesareidenticalfor all neighborhoodsandareapplied
simultaneouslyto eachof them. The rulesoperateover a large numberof cells that carry on only
local information.By applyingtherulesrepetitively to locally updatedphysicalquantitiestheprocess
convergesto adescriptionof theglobalbehavior of thesystem.In topologyoptimizationonesearches
for adistributionof materialwithin adesigndomainthatis optimalin somesense.Thedesignprocess
consistsin redistributionof amaterialandpartsthatarenotnecessaryfrom objectivepointof view are
selectively removed.Topologyoptimizationusuallyendsup in findingmaterial/void distribution that
is visualizedby blackandwhite regionsover thedesigndomain. Thepower law approachdefining
solid isotropicmaterialwith penalization(SIMP)proposedfor exampleby Bendsoe[1] caneasilybe
adaptedherewith designvariablesbeingrelativedensitiesof amaterial.Theelasticmodulusof each
cell elementis modelledasafunctionof relativedensitydi usingpowerlaw: Ei = d

p
i E0, dmin ≤ di ≤

1. Thispowerp penalizesintermediatedensitiesanddrivesdesignto ablack-and-whitestructure.One
of theproposeddesignrulesincludesinformationgatheredwithin anindividualcell neighborhood,as
well ascarriesadditionalsupplementaryinformationinfluencedby all neighborhoods:

d
(t+1)

i = d
(t)
i
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U
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i − βU
(t)

U
(t)
i





In theabove U
(t)

i representsaveragevalueof strainenergy densityfound for cell neighborhoodand

U
(t)

standsfor the global average. By modifying values of tuning parametersα, β it is possible
to weigh thesetwo itemsof information,hencecontrol andmodify performanceof the numerical
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algorithm. It is worth noting that someother local rulesproposalshave beenpresentedin former
authors’paperse.g.[2].

3. Optimal topologies

SelectedCellular Automataoptimal topologiesobtainedwithin the framework of this paper
illustratetheproposedconcepts.Two examplesarepresentedbelow: in theFigure1 acantileverwith
square-shapedline support,andaspatialchair-likestructurein theFigure2.

Figure 1. 128×40 cells (1mm×1mm), P=100N, a=40mm. Iteration40, compliance152.1Nmm, volume
fraction0.25

Figure 2. 5×20×15+25×20×20cells(1mm×1mm×1mm),a=5mm,p=100N/mm2. Iteration33,compliance
119.6Nmm,volumefraction0.18

4. Closing remarks

Themainadvantageof thedevelopedCA algorithmis thatit is a fastconvergenttechniqueand
usuallyrequiresfar lessiterationsascomparedto otherapproachesto achieve thesolution. What is
alsoimportantit doesnot requireany additionaldensityfiltering. Therearenot many parametersto
adjust,andit is very easyto implementparallelcomputationsin CellularAutomataalgorithms.Fi-
nally, for topologyoptimizationproblemschangingmeshdensitydoesnot influenceresultingtopolo-
giesandsolutionsarefreefrom checkerboardeffect.
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 Direct methods, namely shakedown and limit analysis, are used effectively for the prediction 
of structure failure behavior under variable loads with unknown evolution in time. The extension of 
the classical shakedown theorems to thermal loadings are mainly applied in homogeneous materials 
[1]. In this work, a numerical method is presented to determine the shakedown and limit loads of 
periodicall y heterogeneous structures under thermal and structural loading.  
 Shakedown analysis of heterogeneous materials generall y concerns two scales [2, 3]. On 
microscopic scale, the Melan’s lower-bound shakedown theorem is applied to representative 
volume element (RVE). The diff iculty here lies on the implementation of periodic boundary 
conditions. According to the type of the prescribed loading condition, either a strain approach or a 
stress approach can be adopted for structural loading [4]. By thermal loading, periodic coupling 
boundary conditions of RVE must be considered and the quadratic yield condition of von Mises 
type, has to be satisfied [5] 

 
It means that shakedown may happen if there exist a safety factor  and a time-independent and 
periodic residual stress field  in the RVE, so that the total stress field  does not violates 
the yield condition at associated temperature field .   
 On the macroscopic scale, the global response of the composites is investigated. The link 
between local stress field in RVE and global admissible stress field is made by means of 
homogenization theory [6]. In the shakedown theory for composite materials with periodic 
microstructure, the macroscopic stress is decomposed as follows 

 

 The effective properties of the composite are determined from geometrical and material data 
available from the study of a RVE. For periodic composites, these data are completely specified 
from geometrical and mechanical properties of a unit cell  which generates by periodic repetition the 
whole microstructure of the composite. 
 The use of Melan’s shakedown theorem in composites leads to a nonlinear convex 
optimization problems, which is characterized by large number of variables and constraints. The 
numerical implementation mainly involves two tools: finite element method and large scale 
nonlinear optimization method. In term with principle of virtual work, the discretization is carried 
out for the purely elastic stress field  and the residual stress field . The use of solid non-
conforming elements, constructed from bili near shape functions and enriched by internal second-
order polynomials, may not only increase the basic accuracy of shakedown and limit analysis of 
composites, but also reduce the scale of optimization problem [7]. For the solution of such large 
scale convex mathematical programming, an interior-point-algorithm based optimization software 
package is adopted [8], which is proved to be reliable and eff icient [1].  
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 In this paper, this methodology is ill ustrated by the application to a structure made of 
composites under variable pressure and temperature loads. The proposed method provides a direct 
numerical approach to evaluate the macroscopic properties of heterogeneous materials with periodic 
micro- or meso-structure as a useful tool for the design of structures. 
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1. Introduction 

This paper proposes a Substructure Isolation Method (SIM) for online local health monitoring 
at the substructural level. The SIM [1] includes two key steps: isolation of the substructure, and its 
local identification. Isolated substructure is an independent virtual structure, which is isolated from 
the global structure with virtual supports placed in the interface DOFs. Its response is constructed by 
such a linear combination of time series of measured local responses that the desired boundary 
conditions are satisfied and all  outside influences are removed. Given the combined response, the 
substructure is locall y identified using any of the standard methods aimed originall y at global 
analysis. This is unlike other substructuring methods, see e.g. [2,3], which require dedicated methods 
in order to deal simultaneously with structural damages and generalized interface forces. 

The SIM has been originall y [1] used in off- line analysis and required zero initial conditions. 
Here, it is used for local online monitoring by a repeated application to successively extracted 
measurement time series. Non-zero initial conditions are allowed; they are reflected in a free 
vibration component of the constructed responses of the isolated substructure. 

2. Sensors, excitations and measurement time series 

The substructure is virtuall y isolated from the global structure by placing virtual supports in all  
its interface DOFs. These supports are implemented by physical interface sensors xi, i=1,…,IB, and 
used for the purpose of isolation only. Besides, there are IS internal sensors yi, i=1,…,IS, which are 
placed inside the substructure in order to measure its response. The isolation process consists of 
altering the readings yi of the internal sensors (using the reading of the interface sensors xi) in such a 
way that the result equals their reading as if they were placed in a physicall y isolated substructure. 

Here, no intentionall y applied excitations of the substructure are considered. That is, the sensors 
measure only its free response to operational excitations occurring in the outside structure, such as 
wind, traff ic, modal hammer, running engines, etc. 

For the purpose of online monitoring, it is assumed that the responses xi and yi are measured 
continuously. The time series measured this way { xi(tk)} k and { yi(tk)} k are divided into N successive 
and possibly overlapping time sections each of length K, Kk
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are combined into a single interface response vector nX . The readings of all  the internal sensors n
iy , 

i=1,…,IS, are combined into a single internal response vector nY , too. 

3. The combined response and isolation 

Assume that the measurement vectors Xn and Yn for n=1, …, N+1 are extracted from the 
measured time series and available. Consider the following combined response vectors: 
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where the vector α  collects is combination coeff icients nα , and X and Y are matrices composed of 
column vectors Xn and Yn. If  the substructure is assumed to be linear, the combined response vectors 
CX and CY are its valid responses (solutions to its equation of motion), and they can be thus used for 
monitoring. Moreover, if the combination coeff icients are selected in such a way that the combined 
interface response vanishes,  

(2) ,1 0XαXCX =+= +N   ,11 +−−= NXXα  

then the corresponding combined internal response vector CY,  

(3) ,111 +−+ −= NN YYXYCY  

is the response of the isolated substructure (the actual substructure, as if it was physicall y isolated 
from the outside structure). 

4. Online local structural health monitoring 

The response CY of the isolated substructure can be used with any general SHM approach 
aimed originall y at global monitoring [4]. Online monitoring is possible by repetiti ve (1) updating of 
the set of N time sections used to construct Xn and Yn with new measurements, (2) application of the 
SIM to the updated set, and (3) application of an SHM method to the constructed response. 

5. Numerical and experimental examples 

The isolation approach was verified experimentally using an aluminum cantilever beam and a 
virtual pinned support, which was implemented by a transverse velocity sensor and a strain sensor. 
The damage was identified by fitting the natural frequencies of the modeled substructure [5] to the 
identified frequencies of the isolated substructure [6]. Due the space constraints of this abstract, the 
results will  be presented during the conference. 
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 Instrumented indentation techniques at micro or nano-scales have become more popular for 
determining mechanical properties from small samples of material [1]. These techniques can be 
used not only to obtain and to interpret the hardness of the material but also to provide information 
about the near surface mechanical properties and deformation behaviour of bulk solids and/or 
coating films. In particular, various approaches [1, 2] have been proposed to evaluate the elastic-
plastic properties of power-law materials from the experimental loading-unloading curves. In order 
to obtain a unique set of elastic-plastic properties, many researchers have proposed to use more than 
one set of loading-unloading curves obtained from different indenters [3, 4].  
 A combined Finite Element (FE) analysis and optimisation approach [5] developed by the 
authors, using three types of (single) indenter (Conical, Berkovich and Vickers), for determining the 
elastic-plastic material properties, using one set of µVLPXODWHG¶�WDUJHW�)(�ORDGLQJ-unloading curves 
and one set of real-li fe experimental loading-unloading curves, will  be described. The results 
obtained have demonstrated that excellent convergency can be achieved with the µVLPXODWHG¶�WDUJHW�
FE loading-unloading curve, but less accurate results have been obtained with the real-li fe 
experimental loading-unloading curve. This combined technique has been extended to determine 
the elastic and visco-plastic material properties using only a single indentation µsimulated¶ loading-
unloading curve based on a two-layer viscoplasticity model [6].  
 A combined dimension analysis and optimisation approach [7] has been developed and used 
to determine the elastic-plastic material properties from loading-unloading curves with single and 
dual indenters. The dimension functions have been established based on the parametric study using 
FE analyses and the loading and linearised unloading portions of the indentation curves. It has been 
demonstrated that the elastic-plastic material properties cannot be uniquely determined by the test 
curves of a single indenter, and the unique or more accurate results can be obtained using the test 
curves from dual indenters.  
 Since the characteristic loading-unloading responses of indenters can be approximated by 
the results of dimensional analysis, a simplified approach [8] has been used to obtain the elastic-
plastic mechanical properties from loading-unloading curves, using a similar optimisation 
procedure. It is assumed that the loading-unloading portions of the curves are empiricall y related to 
some of material properties, which avoids the need for time consuming FE analysis in evaluating 
the load-deformation relationship in the optimization process.  This approach shows that the issues 
of uniqueness have been raised by using a single indenter and more accurate estimation of material 
properties with dual indenters can be obtained by reducing the bound range of mechanical 
parameters.  
 This paper highlights some recent development of optimization techniques, for use in 
determining elastic-plastic and visco-plastic properties from instrumented indentation loading-
unloading curves. The optimization approaches based on FE analysis, dimension analysis and a 
simplified empirical method are briefly described. The general performance and the applicability of 
those techniques are evaluated and some of limitations and areas that need to be exploited in the 
future are briefl y addressed.  
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STRUCTURAL DAMAGE DETECTION

THROUGH WAVELET DECOMPOSITION AND SOFT COMPUTING
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1. Introduction

Damage identification belongs to the field of problems connected with structural health mon-

itoring and safety assessment. Safety of the structure can be decreased by defects evolving in the

structure which may take the form of cracks, voids, decohesions etc. It is expected that various

methods of damage identification provide information whether damage exists or not. Among a large

number of non-destructive testing one can propose for example X rays, vibration, acoustic emission,

heat transfer, etc. These methods of inspection allow to identify the position of damage and possibly

also its form and magnitude. In this work methods of damage identification based on measurement

of structural response to the actual actions or actions specially planned and applied to the existing

defective structure are proposed. Different types of structural response namely displacements, veloc-

ities or accelerations can be monitored. By the comparison of the response of the existing structure

with the response of its computer model containing expected damage parameters one can construct

the discrepancy function. Minimization of the differences between measurable quantities computed

by the numerical model and recorded on the real defective structure allows to obtain the information

on the defects. Recently alternative approaches have been developed where data processing tech-

niques are applied to the response signal of the damaged structure only, therefore the time-consuming

optimization procedures can be avoided. At present the great potential is assigned to methods of ar-

tificial intelligence e.g. Artificial Neural Networks (ANNs) [1] or methods of signal processing e.g.

Fast Fourier Transform (FFT) and Wavelet Transform (WT) in continuous (CWT) or discrete (DWT)

form.

In this work the attention is focused on Wavelet Transformation in its discrete form. The most

fundamental challenge is the fact that damage is typically local phenomenon and may not significantly

influence the global response of structures. Signal decomposition using WT allows to detect and

localize the damage [2] because wavelets demonstrate strong disturbance in a place where the damage

is localized. To assess the magnitude of the damage Lipschitz exponent for example can be used.

However, data processing of the structural response signal using WT proved to be rather ineffective

in identification of the type or shape of a defect. Therefore, the possibility of using a new approach of

more precise damage identification based on Artificial Neural Networks is studied. Here the attention

is focused on Radial Basis Function Networks (RBFNs).

2. Description of the proposed method

The proposed method uses both Discrete Wavelet Transformation and Artificial Neural Net-

works as a damage detection tools which, in combination, gives possibility to detect not only the

localization of damage [3] but also its shape and/or size. All geometrical features of defect together

with its localization in the structure form a vector of parameters x to be identified. In order to ver-

ify if such identification can be done in the real experiment, it is commonly accepted to build first a

computer model which mimic the examined structure and perform on it the numerical identification

procedure. Usually a pseudo-experimental validation analysis consist of two steps: (1) first a refer-

ence model with a-priori chosen parameters x∗ is computed and all necessary signals are stored; (2)

later the numerous of identification procedures are performed starting from different values of xi 6= x∗
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in order to check if convergence to known solution x∗ can be obtained. Alternative to (2) is to use,

instead of iterative solver, the ANN for x∗ prediction. ANNs provides a very fast identification tool

which can be used ’in situ’ on a portable computer without any time-consuming computations nor so-

phisticated software. However ANNs require to be trained, which, in general, is an expensive process

if many training examples need to be generated, yet the training is done once-for-all in the prelimi-

nary phase (i.e. not during the identification phase). Here the training samples are computed by the

Finite Element (FE) model, which for various damage parameter vectors xi computes the response

signals (displacement and acceleration fields). Then the signal is transformed through DWT and the

wavelet coefficients are computed; all coefficients form a vector c, and together with corresponding

damage parameters gathered in x, are used as training data for ANNs (each training sample consists

of damage parameter vector x as ANNs’ output and wavelet transformation coefficient vector c as an

input).

In the first step of validation the different types of damage (e.g. inclusions, voids, stiffness or

cross-section reduction, etc.) are employed in the numerical model in order to check which defect

type perturbs the most the measurable signals and therefore the sensitivity of the signal with respect

to damage parameters. The recorded signals are the deformations and accelerations of various points

in the structure (here beams and plates are investigated). In beams defect is modeled as a step-wise

reduction of cross-section on a small area and/or stiffness reduction whereas in plate structures defects

have the form of voids or inclusions (also reduction of cross-section and stiffness is checked).

In the later stage the attention is focus on proper training techniques of ANNs and reduction

of input data (wavelet transformation coefficients vector c) through principal component analysis.

The minimum number of ANNs training samples (i.e. the number of damage scenarios) necessary in

appropriate construction of model approximation is also studied here in order to reduce the number

of experiments to be performed.
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DESIGN AND ANALYSIS OF COMPLIANT MECHANISMS WITH FLEXURE HINGES
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1. Introduction and motivation

In order to create machine tools for small -scale applications, compliant mechanisms have be-
comequitepopular in recent years as an alternative to rigid bodysystemsconnected by conventional
pin joints. Compliant mechanismsareflexible, monolithic structureswhoseoverall motion isa result
of the elastic deformation of certain components, so called flexural hinges. Compliant mechanisms
are potentially more accurate, have superior scalabilit y, are cleaner, lessnoisy and, most important,
lessexpensive to manufacture and maintain than conventional devices.

However, designing compliant mechanisms is difficult and non-intuitive due to their inherent
complex overall deformation. Therefore, a topology optimization algorithm based on a continuum
design domain is applied to maximizethe motion ona user-specified output path. Fatigue effects on
theflexural hingescan lead to premature failureof the entireCM under dynamic loadingconditions.

To describe the mechanical behavior of a feed unit in an accurate way, very large and sparse
finite element modelsarise. Thus, thenumerical simulationsrequire an unacceptable amount of time
and memory space. This fact and the need for efficient control algorithms motivate the introduction
and application of model order reductionmethods.

2. Topology optimization for compliant mechanisms

A topology optimization procedure isused for thedesign of large-displacement, path-following
compliant mechanismspossessing optimizedflexurehinges. It isbased ona continuumdesign domain
isapplied tomaximizethemotionuout(x) onauser-specified output pathu

spec

out , as shown in theupper
box of Fig. 1. Non-linear geometric effectsare taken into account to ensureproper modelli ng of large
displacements occurring in compliant mechanisms. A robust and efficient staggered optimization
scheme, based on optimality criteria methodand globally convergent method of movingasymptotes,
is implemented to solve theoptimization problem P written as

P =































minimize
X

f(x) = −||uout(x)||

subject to g1(x) = ||uout(x) − u
spec

out || − ǫ ≤ 0

g2(x) = xi − xspec ≤ 0, i = 1, . . . , n

K(u)u = f

x ∈ X = {x ∈ R : xi ≤ xi ≤ xi, i = 1, . . . , n},

with xi as the design variables (i.e. densities of n elements), xspec as its specified maximum value,
andK(u), u and f as thestiffnessmatrix, displacement vector and external load vector, respectively.
The obtained final topology of the compliant mechanism is able to follow the specified motion path
within thegiven precision limit ǫ.

This procedure yields final topologies of compliant mechanism that include the positions of
artificial (flexure) hingesbut not their optimal shape leaving doubtsonthephysical meaningaswell as
an uncertainty in themanufacturing process. To overcomethisdrawback, artificial hingesarereplaced
by real flexure hinges meeting the performance specifications given by the compliant mechanism’s
kinematicsand/or by the intended application. Different flexure hingeswere investigated beforehand
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Figure 1. Schemeof the optimization procedure for compliant mechanisms

in termsof relevant performance criteriasuch asmaximum deflectionrange, bendingstiffness, natural
frequency and, most importantly, fatigue li fe. Explicit analytical expressionsarederived for common
rectangular and circular as well as customizable parabolic hinge geometries for static and dynamic
loadingconditionsand are validated by experimental data (cf. [1]).

3. Model order reduction for compliant mechanisms

Model order reduction is an established methodin many technical fields for the approximation
of large-scale linear time-invariant dynamical systems described by ordinary differential equations.
Based on system theory, underlying representations of the dynamical system are introduced from
which the general reduced order model is derived by projection. During the last years, numerous
new procedures were published and investigated appropriate to simulation, optimizationand control.
Singular value decomposition, condensation-based and Krylov subspacemethods representing three
order reduction methods are reviewed and their advantages and disadvantages are outlined with re-
spect to compliant mechanisms. Moreover, the requested attributes for order reduction as a future
research directionmeeting the characteristics of compliant mechanismsare commented.
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1. Introduction 

The paper presents an approach to the optimal design of bolted joints using the finite element 
method. It was discussed how to create the parametric models of such connections. Particular 
attention was paid to their practical use for stress analysis involving optimization procedure. For the 
optimization process where the number of iterations is not known in advance, reducing 
computational time for each set of optimization is undoubtedly beneficial.  

Besides, the paper takes up the question of how to form the mesh within the notch area due to 
reducing computational time of optimization process. The author also pays attention to the way of 
accepting the objective function depending on the geometry of studied element. Practical 
application of the issues raised in the article is presented on the example of the stress analysis and 
geometric optimization for two types of nuts. These are the nut with supporting ring and the nut 
with undercut. 

2. Parametric models of bolted connections 

To perform the optimization problem two–dimensional axysymetric finite element models of 
bolted connections were used. Such models are suff icient for stress analysis and optimization due to 
obtaining the minimum of stress on the thread of bolt [1],[2]. Geometry of studied nuts and their 
design variables for geometrical optimization are shown in the Fig.1 and Fig.2. 

 
 

Fig. 1. Design variables and dimensions for parametric 
model of nut with supporting ring 

 
Fig. 2. Design variables and dimensions for parametric 

model of nut with undercut 

3. Modeling the radius of notch fillet by using proper size of finite element 

 In bolted connections the thread is a structure consisted of serial notches. Fill et radius at the 
root of thread has at best few milli meters. Therefore to obtain the suff iciently approximated outline 
of curvature, it is necessary to use very fine mesh within the notch area. This in turn results in a 
rapid increase in the number of finite elements and elongates the computational time.  Optional way 
to obtain correct solution may be modelli ng the notch radius as a sharp notch and accepting the size 
of finite element within the notch area so that obtained result will  be convergent. According to [2] 
decrease in the finite element number for axisymetric model of trapezoidal thread Tr100x12 can 
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reach 82% (2–D, 8–Node element) while the percentage relative error of maximum stress is less 
than 1% (compare fig.1 and fig.2). Applying of this method for modeling the radius of notch fill et 
can significantly reduce the computational time for optimization set. However, it requires choosing 
the proper size of finite element depending on angle and radius of the notch. 

 

 

Fig. 1. HMHσ  stress map of 2–D axisymmetric model of 
bolted joint Tr100x12with rounded notches 

 

Fig. 2. HMHσ  stress map of 2–D axisymmetric model of 
bolted joint Tr100x12 with sharp notches 

4. Acceptance of the objective function 

For studied nuts, it was assumed that the height H and the outer diameter pd3/pp3 are 
constant. In that case for nut with supporting ring the mass is also constant, so the objective 
function was accepted as a Huber-Mises-Hencky reduced stress on the thread of bolt. Whereas for 
nut with undercut, the objective function can be formulated as given by equation 1. Such a 
formulation of the objective function allows to take into account stress and area (mass) criterions 
simultaneously. Significance of mass criterion can be controlled by f and n factors. 
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Bmaxσ – maximum HMHσ  stress in the thread of bolt for starting point [MPa], 
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Bmaxσ – maximum HMHσ  

stress in the thread of bolt for current optimization set [MPa], 
SP
NA – surface area of nut for starting point [mm2], 

SET
NA – surface area of nut for current optimization set [mm2] 
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1. Introduction

Thinfilmbulk acoustic resonators(TFBAR) havebeenadoptedasalternativesto high-frequency
SAW resonators, due to their inherent advantages, such as low insertion loss, low cost, high power
handlingcapabilit y andsmall size. TFBAR consistsof apiezoelectric layer sandwiched between two
metal electrodes. The electric field of the signal acrossthe electrodes sets the piezoelectric film into
vibration. For example, they are analysed in [1]. The crystallographic orientation of the piezoelec-
tric film (c-axis oriented normal to the film surface) is such that the devicework in the fundamental
thickness-extensional mode. Vibrationspropagatesin thethinSi3N4 membranemechanically coupled
to thebottom electrode. Theresonancefrequency ismainly determined by thethicknessof thepiezo-
electric layer (several 100 nm) and they are suitable for mobile communicationsystems operating in
the1 to 10GHz range.

2. Numerical model

The TFBARs are realized on a Si3N4 membrane, 200 nm thick, chemically etched on a Si
substrate. The AlN film is grown ona metal (Al or Pt) bottom electrode previously sputtered onthe
Si3N4 diaphragm; then an Al or Pt metal topelectrode isdeposited ontheAlN freesurface, being the
active areaof thedevicein the range from 500x500to 500x200m2.

(a) (b)
Fig. 1. The resonator, top view (a), cross-section (b)

Theimportant modesfor theresonator arethethicknessmodes. Thethicknessmodeisevaluated
on sample of AlN. The test example is prepared for 1000x1000x1000 nm cube (Fig. 2a) with the
sliding boundary conditions along the 4 walls of the cube. The cube was discretized with 1000 8-
nodesbrick elements. Wehaveobtained the thicknessmode asmode9 and the corresponding natural
frequency 5.55GHz which matches the analytical solution for Masons resonator [2].

(a) (b)
Fig. 2. Test example (a), activepart, thicknessmode (b)
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It is shownthe analysisof thethicknessmodeof thefollowingresonator Al(100nm)/AlN(1000nm
Al(100nm)/ SiN(200nm) and the active areaof 0.5x0.5 mm. The corresponding thicknessmode is
shown in Fig. 2b.
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Fig. 3. Numerical resultsandexperimental results for Al electrodes (a), numerical results for Al and
Pt electrodes (b)

The thicknessmode is identified as 4222with the corresponding frequency of 3.889GHz. Further,
the analysisof different AlN resonators of the thicknessesbetween 1.0 and 5.0 µm is carried out and
compared with the experiment. The results are shown in Fig. 3a It has been foundthat thedifference
between the experiment andthenumerical resultsis in therangeof 3% up 10%. Thehigher difference
appears for thinner layers of AlN. The results of the analysis of the resonators with Pt electrodes is
given in Fig. 3b.

(a) (b)
Fig. 4. Considered void (a), imperfect mode(b)

We consider an imperfect system with void, Fig. 4a. The system without void vibrates in thickness
mode. This is in contrast to the imperfect one, Fig. 4b. First of all , the general mode is skewed and
we can see abulgeon top. Wemay note, that theFEA isuseful to capture the effect of tiny voidsand
impurities.
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Burczýnski T., 48

Caliendo C., 316
Celigueta M.A., 10
Chen M., 304
Chinchaladze N., 236
Chmielewski M., 206
Cieszko M., 44, 194, 196
Czechowicz K., 22

Damaziak K., 40
dell’Isola F., 13
Denina O., 46
Derezin S.V., 238
Dietrich L., 146

Dirksen F., 312
Długosz A., 48
Dodla S., 120
Dubois F., 28
Dziatkiewicz J., 64

Egner H., 78, 166
Egner W., 78
Eremeyev V.A., 244
Ermakov A., 240

Fernández-Canteli A., 154
Fernández-Sáez J., 132, 154
Fernández-Zúñiga D., 154
Fialko S., 50
Formica G., 242
Fournier Dit Chabert F., 80
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Jáskowska D., 300
Javili A., 198
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Kaczýnski P., 264
Kaleta J., 282
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Maździarz M., 204
McBride A., 198
Mercier S., 14

Michalak B., 270
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Pluciński P., 36
Płochocki Z., 138
Podio-Guidugli P., 242
Postek E., 28, 316
Potoczek M., 174
Prikazchikov D.A., 246
Przybylski M., 282
Putanowicz R., 36, 66
Pyrz M., 278

Quilici S., 80

Rimša V., 210
Rittel D., 112
Rodríguez-Martínez J.A.,

112
Rösner M., 312
Rojek J., 172, 206, 210
Rossi R., 10
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